Instructional Council
Meeting Agenda
3:30 PM-5:00 PM
Tuesday, April 28, 2015
Bistro

Roxanne Kelly, VPI  |  Kristi Hurt (Sec.)  |  Jason Aase  |  Debbie Hill
Jesse Morrow       |  Martha Joyce        |  ASUCC Public Relations
David Farrington  |  Ali Mageehon        |  Cheryl Yoder  |  Mandie Pritchard
Paula Usrey        |  Amy Fair            |  Susan Rochester  |  Lisa Fields
Chris Grant        |  Ken Carloni         |  Dee Winn  |  Mary Morris
Michelle Bergmann  |  Joan Campbell       |  Clay Baumgartner  |  Tamra Samson
Marjan Coester     |  Elizabeth Bastian   |  Jessica Richardson  |  Crystal Sullivan
ASUCC Senator 6

Approval of Instructional Council Minutes-  March 3, 2015

New Programs:
To be presented by Ken Carloni:
- Natural Landscape Monitoring Option

New Courses:
To be presented by: Ken Carloni
- NR 242-Ecosystems of Southwest Oregon and Northern California
- NR 243-Historical Ecology of Pacific Northwest Landscapes
- NR 251-Principles of Fish and Wildlife Conservation
- NR 255A-Landscape Monitoring: Fall
- NR 255B-Landscape Monitoring: Winter
- NR 255C-Landscape Monitoring: Spring

Course Revisions:
To be presented by Jillanne Mitchell:
- ENG 201-Shakespeare
- ENG 202-Shakespeare
- ENG 203-Removal of Course

To be presented by: Ken Carloni
- BI 221- Principles of Biology- *Course Number needs Updated*
- CH 112- Fundamentals of Chemistry

Informational:
- PN 102-Foundations of Practical Nursing- Tamra
- PN 103-Foundations of Practical Nursing II- Tamra
- Potential Occupational Skills Training (OST) and Water Quality Degree Offering at UCC- Clay
- Potential Forestry Engineering (FE), Forestry Management (FM) and Natural Resources (NR) Degree Offering at UCC- Clay

Next Curriculum Committee May 12th & Instructional Council May 26th
1) The Social Science Dept. chair, Paula Usery, and Sociology professor Emery Smith have determined that NR 295: Environmental Dispute Resolution meets the Social Science requirement for the AAOT. We are requesting that this information be added to the 2015-16 catalog.  
M-√  
S-√  
Approved

2) The English Dept. Chair (Amy Fair) and the professor who will teach ENG 230: Environmental Literature (Jill Michel) have determined that this course meets UCC’s Cultural Literacy requirement. We are requesting that this information also be added to the 2015-16 catalog.  
M-√  
S-√  
Approved

Please review the information pasted below and send your comments via email to the group regarding these Instructional Council requests. We will be using the electronic voting button that I will send immediately after this email you will receive two voting emails one for each idem. Please complete the voting before 4:30pm today.

NR 295 - Environmental Dispute Resolution (3)  
This course examines natural resource-based conflicts on public and private lands, and presents strategies to resolve them. Analysis of root causes of environmental gridlock, including important values people hold towards the environment and development, and the tendency of groups and individuals to rely on traditional and well-understood
methods for dispute resolution such as the courts and electoral and legislative processes. Course will focus on why disputants and the interested public find themselves increasingly frustrated by gridlock and dismayed at gridlock’s effects on both environmental quality and local and regional economies, and how these frustrations are leading to the use of alternative resolution methods. 3 lecture hrs/wk.

ENG 230: Environmental Literature (4)
This course aims to explore the ways in which ideas about the physical or “natural” environment have been shaped into American literature. The course will survey a variety of important texts in this tradition and introduce students to different eras and genres, including early environmental thinkers, policy documents, progressive and radical writers, as well as gendered discourse. Students will employ critical writing, critical thinking and critical reading skills. Although this is a literature course, we will keep issues from environmental ethics and environmental history close at hand, and students will be invited to devote one paper to linking environmental questions to an area of their own interest. Recommended Prerequisites: WR 095 with a grade of C or better or appropriate Compass placement test scores; AND RD 090 with a grade of C or better or appropriate Compass placement test scores. 4 lecture hrs/wk.

Here are the JBAC regs. For Cultural Literacy courses: (http://www.ous.edu/files/state_board/meeting/dockets/ddoc100107-GenEd.pdf)

Cultural Literacy outcomes will be included in courses that meet the outcomes and criteria of a Discipline Studies requirement.

As a result of taking a designated Cultural Literacy course, learners would be able to:

• Identify and analyze complex practices, values, and beliefs and the culturally and historically defined meanings of difference.

A course with the Cultural Literacy designation will:
1) Explore how culturally-based assumptions influence perceptions, behaviors, and policies.
2) Examine the historical bases and evolution of diverse cultural ideas, behaviors, and issues.

Each course may also do one or more of the following:
• Critically examine the impact of cultural filters on social interaction so as to encourage sensitivity and empathy toward people with different values or beliefs.
• Investigate how discrimination arises from culturally defined meanings attributed to difference.
• Analyze how social institutions perpetuate systems of privilege and discrimination.
• Explore social constructs in terms of power relationships.
Name of Program: **Natural Resources: Landscape Monitoring Option**  
Contact Name and Title: Ken Carloni, Ph.D., Science Dept. Chair  
Department: Science  
Supervisor: Jason Aase, Dean of Arts and Sciences

**Program-Specific Information**  
**Date, Year, and Term of Proposed Implementation:**  
Fall 2015

**Program Award:**  
- Less than 1 year certificate  
- 1 year certificate  
- 2 year certificate  
- Career Pathway certificate  

**AS Degree**

Number of Credits: 95

**New Program Title: Natural Resources: Landscape Monitoring Option**

**Program Description**  
This is an Associate of Science degree that articulates with the Bachelors of Science degree in Natural Resources at Oregon State University’s College of Forestry. This A.S. program aims to educate students in the theory and practice of ecosystem monitoring, and to give them broad laboratory and field training in measuring and analyzing ecological conditions at the microsite, community, and landscape levels.

**Labor Market Need**  
From 2012 to 2022, OLMIS projects the following job growth percentages for Natural Resources graduates in related degrees along with current average wages:

<table>
<thead>
<tr>
<th>Profession/Degree Required</th>
<th>Growth</th>
<th>Avg. Salary/Yr.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Biological Technicians (AS+)</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oregon</td>
<td>+14.3%</td>
<td>$39,656</td>
</tr>
<tr>
<td>Douglas Co.</td>
<td>+2.5%</td>
<td>n/a</td>
</tr>
<tr>
<td>Lane Co.</td>
<td>+14.8%</td>
<td>$40,088</td>
</tr>
<tr>
<td><strong>Conservation Scientists (BS+)</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oregon</td>
<td>+11.0%</td>
<td>$71,742</td>
</tr>
<tr>
<td>Douglas Co.</td>
<td>+16.7%</td>
<td>$62,140</td>
</tr>
<tr>
<td>Lane Co.</td>
<td>+16.0%</td>
<td>n/a</td>
</tr>
<tr>
<td><strong>Zoologists and Wildlife Biologists (BS)</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oregon</td>
<td>+15.2%</td>
<td>$66,716</td>
</tr>
<tr>
<td>Douglas Co.</td>
<td>+7.3%</td>
<td>$65,241</td>
</tr>
<tr>
<td>Lane Co.</td>
<td>+11.1%</td>
<td>$64,094</td>
</tr>
</tbody>
</table>
In addition to these positive local and regional job projections and earning potentials, pending legislation and current trends will require more thorough monitoring and analysis of both site-level and landscape-level data to plan and monitor the ecological practices that will increasingly be used to manage natural resources. Demand for broadly trained ecosystem scientist/managers will therefore increase in the public land management agencies to guide management activities, and also in private industry to meet state and federal standards.

The need for such specialists will be particularly strong in Douglas Co. and surrounding counties over the next several years, where many senior-level scientists and technologists are nearing retirement.

**Target Student Population:**
We expect to attract students of all ages who are confident in the outdoors, who are committed to the conservation and restoration of native biodiversity, and who are seeking well-paying employment associated with abundant opportunity for professional growth and high levels of job satisfaction.

**Program Outcomes:**
Students who graduate with an Associate of Science degree in Natural Resources will be prepared to transfer seamlessly to Oregon State University’s Natural Resources program in the College of Forestry. Students will be able to:

1. Recognize and classify common plant and animal species in the field, and use dichotomous keys to determine or verify their identity.

2. Describe key ecological cycles, disturbance processes, and ecological succession in landscapes of the Pacific Northwest.
3. Describe the ways in which utilization, management, and allocation of natural resources are affected by 1) laws, policies, and economic factors (both market and non-market) operating on public vs. private lands, 2) ownership patterns of private and public resources, and 3) societal characteristics (including demographic, cultural, ethnic, and social values).

4. Recognize and describe the interrelationships between the ecological communities that produce natural resources and the social communities that consume and manage them.

5. Discuss historic range of ecosystem variability, human impacts that influence ecosystem change, and the future sustainability of natural resources.

6. Work safely and navigate efficiently in the field using map, compass, GPS and other orienteering and data gathering technologies.

7. Demonstrate current protocols for gathering and recording data in the field and lab.

8. Demonstrate effective literature review and conventional report writing skills.

9. Map and quantify a range of natural resources at multiple scales.

10. Analyze numerical and spatial environmental data, and apply current theory to those findings to solve problems in natural resource management.

11. Envision and plan desired future landscapes that will achieve a set of natural resource-related objectives, prescribe management actions needed to achieve those objectives, and evaluate the success of these actions.

12. Communicate effectively orally, in writing, and through current presentation technologies with audiences of diverse backgrounds.

13. Work collaboratively within and among professional interdisciplinary teams and diverse community groups to resolve management problems and achieve management objectives.

14. Self-assess professional strengths and weaknesses, and be committed to lifelong learning and professional development.

Program Impacts:

- Standard Instructional Costs (staff, materials, equipment or facilities) are required.
- Additional instructional costs (staff, materials, equipment or facilities) are needed.
- Impact to other divisions in terms of scheduling or staffing.
Program Impact Description:
Current full- and part-time instructors will teach the bulk of the new courses included in this program. Although the Science Dept. is already well equipped with the materials and apparatus necessary to teach most of the new course content, we anticipate the need for several thousand dollars worth of specialized equipment. The cost for this will be covered by the SCIFEE budget using student lab fees we already charge.

Additional Instructor Requirements (FT/PT, number, qualification, ability to recruit):
Courses for this program will be taught by full- and part-time instructors currently employed in the Science Dept. as well as one other part-time instructor currently being hired for an additional course. This is a particularly opportune time to begin this program -- because of falling enrollments throughout UCC, most of the cost of this program will be offset by a) closing extra sections of classes we currently teach in the Science Dept. but are under-enrolled, and b) by increasing adjunct teaching loads that are paid at a lower rate than full-time faculty. The recently submitted 2015-16 Science Dept. budget only includes an additional $3,000 over last year’s personnel budget, and this already accounts for step increases, so the financial impact on the Dept. will be very small. We hope to receive a reasonable marketing effort by UCC’s marketing department, and Science Dept. faculty will recruit new students through our high school and other community contacts.
Program Standards

Standard A – Need:
The community college provides clear evidence of the need for the program.
This Associate of Science program will complete the Umpqua Natural Resources Pathway from high school diploma to a Bachelor of Science degree in Natural Resources from Oregon State University’s College of Forestry. Courses selected to meet UCC A.S. requirements also meet many OSU Baccalaureate Core, Natural Resource Core, and Specialization requirements. Upper division OSU classes necessary to meet the remaining B.S. degree requirements are all available online through OSU’s Ecampus. Therefore, place-bound students will be able to get their hands-on experiences at UCC, and the rest of the courses for their 4-year degree entirely online, sparing them the expense and disruption of a move to Corvallis.

OSU’s Natural Resources program has grown every year since its inception, so UCC students will progress to a robust and vibrant program. Positive labor market trends have been noted above, and according to a recent report in The Oregonian (1/14/2015), OSU has just kicked off a $30 million fundraising effort as part of a planned $60 million expansion of its forestry school. It wants to double enrollment to 2,000 students due to projected increases in the demand for more trained foresters.

Standard B – Collaboration:
The community college utilizes systemic methods for meaningful and ongoing involvement of the appropriate constituencies.
For the last two years, UCC has partnered with the Phoenix School, Oregon Youth Conservation Corps, Umpqua Watersheds, and the Umpqua National Forest on our youth-oriented “Learn, Earn, and Serve” program funded by the USFS and the National Fish and Wildlife Foundation as part of the “Umpqua Natural Resources Pathway” collaboration with these organizations. This year we will put two crews of 6 youth through UCC classes and out into the field for the third summer working with Forest Service and BLM specialists. We will continue to strengthen and expand these and other partnerships designed to create authentic field experiences for our students while providing reliable data to public land managers. We are currently in talks with the Umpqua National Forest, the Roseburg BLM, ODF&W, the Roseburg Urban Sanitary Authority, the Partnership for Umpqua Rivers, and the Cow Creek Tribe to integrate a wide range of approved protocols into the education and training experiences offered to Natural Resources students.

The chairs of the Science and Engineering departments have recently begun discussions on collaborating on additional articulated Associate of Science degrees in Forest Engineering and Forest Management that will share courses developed for this program. After the roll-out of this program, we also work toward developing similar degrees that will articulate with Fish and Wildlife B.S. degrees in OSU’s College of Agriculture.
**Standard C – Alignment:**

*The program is aligned with the appropriate education, workforce development, and economic development activities.*

This A.S. program fills in the missing step of the Umpqua Natural Resources Pathway from high school to UCC to OSU. It will articulate with OSU’s B.S. in Natural Resources with an option in Landscape Monitoring. Existing and newly designed UCC courses included in the program will all satisfy requirements for OSU Baccalaureate Core, Natural Resources Core, and the Landscape Monitoring option. This option is also designed to allow place-bound students to complete the remainder of their B.S. in Natural Resources through OSU’s Ecampus without having to leave the UCC community.

At every opportunity, the program will partner with agency land managers to provide ecological monitoring opportunities for students on public lands, and high quality data to agency scientists.

**Standard D – Design:**

*The program leads to student achievement of academic and technical knowledge, skills, and related proficiencies.*

This program provides a rigorous course of study with new classes whose outcomes are closely aligned with comparable courses at OSU, and existing classes that meet OSU Baccalaureate Core requirements. The Natural Resources major with our newly designed Landscape Monitoring option is unique in that it gives students hands-on field and laboratory experience earlier in their educational career working on public lands in the Umpqua Basin. We have already developed a close working and teaching relationship with a number of agency specialists currently working in the field – partnerships that we plan to strengthen and expand as the program grows. These relationships will allow us to stay current in standard protocols for collecting and analyzing ecological data, and will keep us in close touch with emerging scientific and social issues associated with Natural Resources conservation and utilization.

**Standard E – Capacity:**

*The community college identifies and has the resources to develop, implement, and sustain the program.*

This program along with six of the twelve new courses were designed and developed by the Science Dept. Chair, who is not requesting any compensation for his time. A small amount of funding will be requested for books and other reference materials. The remaining courses were developed by current Science Dept. faculty who may receive up to $300 each for their final development and implementation (although none so far have indicated that they will ask for that compensation).

The new courses all fit into the current full- and part-time faculty ILC loads, and will replace a number of sections of other classes that have been cancelled because of declining enrollments campus-wide.
Proposed Courses – please attach new course outlines

<table>
<thead>
<tr>
<th>Course #</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WR 121</td>
<td>English Comp. Intro to Argument</td>
<td>4</td>
</tr>
<tr>
<td>WR 227</td>
<td>Technical Report Writing</td>
<td>4</td>
</tr>
<tr>
<td>SP 111</td>
<td>Fundamentals of Public Speaking</td>
<td>4</td>
</tr>
<tr>
<td>MTH 111</td>
<td>Elementary Functions</td>
<td>5</td>
</tr>
<tr>
<td>BI 211</td>
<td>Principles of Biology I</td>
<td>5</td>
</tr>
<tr>
<td>BI 212</td>
<td>Principles of Biology II</td>
<td>5</td>
</tr>
<tr>
<td>BI 213</td>
<td>Principles of Biology III</td>
<td>5</td>
</tr>
<tr>
<td>BOT 203</td>
<td>Field Botany</td>
<td>4</td>
</tr>
<tr>
<td>CH 104 or 221</td>
<td>Fundamentals of Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>ENG 230</td>
<td>Environmental Literature</td>
<td>4</td>
</tr>
<tr>
<td>GIS 134</td>
<td>Introduction to GIS</td>
<td>3</td>
</tr>
<tr>
<td>GIS 135</td>
<td>Geographical Information Systems II</td>
<td>3</td>
</tr>
<tr>
<td>MTH 243</td>
<td>Intro to Statistics</td>
<td>5</td>
</tr>
<tr>
<td>NR 201</td>
<td>Intro to Natural Resources</td>
<td>3</td>
</tr>
<tr>
<td>NR 205</td>
<td>Soil Science</td>
<td>4</td>
</tr>
<tr>
<td>NR 221</td>
<td>Water Resource Science</td>
<td>4</td>
</tr>
<tr>
<td>NR 240</td>
<td>Forest Ecosystems</td>
<td>3</td>
</tr>
<tr>
<td>NR 241</td>
<td>Field Dendrology</td>
<td>4</td>
</tr>
<tr>
<td>NR 242</td>
<td>Ecosystems of SW Oregon and N California (hybrid)</td>
<td>4</td>
</tr>
<tr>
<td>NR 243</td>
<td>Historical Ecology of PNW Landscapes</td>
<td>3</td>
</tr>
<tr>
<td>NR 251</td>
<td>Principles of Fish and Wildlife Conservation</td>
<td>3</td>
</tr>
</tbody>
</table>
### NR 255A
**Landscape Monitoring: Fall**  
2 credits

### NR 255B
**Landscape Monitoring: Winter**  
2 credits

### NR 255C
**Landscape Monitoring: Spring**  
2 credits

### NR 295
**Environmental Dispute Resolution**  
3 credits

### PE 255
**Wilderness Survival**  
2 credits

---

**Total credits for Program**: 95

Courses in **BOLD** type are new courses developed for this program. Outlines for these new classes are included below.

---

### Additional Process Items

- Required: Labor Market Information (LMI) Form *(attached)*
- Required: Course Outlines for all new courses *(attached)*
- Specialized Form: Advisory Committee *(not needed for A.S.)*
- Specialized Form: Start Up Budget *(n/a -- see Standard E above)*
Labor Market Supply and Demand Factors for Community College Program Evaluation

(LMI Worksheet)

<table>
<thead>
<tr>
<th>College</th>
<th>Umpqua Community College</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Person</td>
<td>Ken Carloni, Science Dept. Chair</td>
</tr>
<tr>
<td>E-Mail</td>
<td><a href="mailto:Ken.carloni@umpqua.edu">Ken.carloni@umpqua.edu</a></td>
</tr>
<tr>
<td>Phone</td>
<td>(541) 440-7641</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of proposed program</th>
<th>Natural Resources: Landscape Monitoring Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credential(s) or form(s) of recognition proposed</td>
<td>Associate of Science</td>
</tr>
<tr>
<td>CIP code</td>
<td>260101</td>
</tr>
<tr>
<td>CIP title</td>
<td>Biology</td>
</tr>
</tbody>
</table>

Information is available to complete much of this form at the Employment Department’s Web site http://www.QualityInfo.org in the Occupational Information Center and the Educational Information Center. If necessary, the college may contact the Employment Department’s Occupational Economist at (503) 947-1233 with questions about this information. Not all information needed to establish and document need is necessarily found through Oregon Employment Department resources. Please refer to the section, “Labor Market Supply and Demand Factors Explanation” later in this document for additional information concerning each question. It is the college’s responsibility to utilize any sources of information available to adequately provide evidence of need.
1. What are the common job titles for the occupations that use the skills your program will teach?

<table>
<thead>
<tr>
<th>Job Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biologist, Fisheries Biologist, Wildlife Biologist, Botanist, Restoration Forester, Conservation Scientist, Natural Resources Manager, Environmental Scientist, Hydrologist, Park Ranger.</td>
</tr>
</tbody>
</table>

*Source of this information: General knowledge, job announcements, employers*

2. What occupational title(s) used by the Employment Department's Occupational Information Center on the [http://www.QualityInfo.org](http://www.QualityInfo.org) Web site most closely describes the above occupations? What is the occupational description in the Occupational Information Center? (This is the occupation and description for which the data below will describe)

<table>
<thead>
<tr>
<th>Occupational Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservation Scientists</td>
<td>Manage, improve, and protect natural resources to maximize their use without damaging the environment. May conduct soil surveys and develop plans to eliminate soil erosion or to protect rangelands. May instruct farmers, agricultural production managers, or ranchers in best ways to use crop rotation, contour plowing, or terracing to conserve soil and water; in the number and kind of livestock and forage plants best suited to particular ranges; and in range and farm improvements, such as fencing and reservoirs for stock watering.</td>
</tr>
<tr>
<td>Natural Sciences Managers</td>
<td>Plan, direct, or coordinate activities in such fields as life sciences, physical sciences, mathematics, statistics, and research and development in these fields.</td>
</tr>
<tr>
<td>Environmental Scientists and Specialists</td>
<td>Conduct research or perform investigation for the purpose of identifying, abating, or eliminating sources of pollutants or hazards that affect either the environment or the health of the population. Using knowledge of various scientific disciplines, may collect, synthesize, study, report, and recommend action based on data derived from measurements or observations of air,</td>
</tr>
<tr>
<td>Occupational Title</td>
<td>Most Recent Employment</td>
</tr>
<tr>
<td>--------------------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Conservation Scientists</td>
<td></td>
</tr>
<tr>
<td>Natural Sciences Managers</td>
<td></td>
</tr>
<tr>
<td>Environmental Scientists</td>
<td></td>
</tr>
<tr>
<td>Zoologists and Wildlife Biologists</td>
<td></td>
</tr>
<tr>
<td>Foresters</td>
<td></td>
</tr>
</tbody>
</table>

*Data for these occupations are not individually broken out in the national statistics.

Source of this information: Occupational Information Center on http://www.QualityInfo.org

3. What is the current number of jobs in the occupation(s)?

Region = Douglas Co / Lane Co (1-15, See the Regions section of http://www.QualityInfo.org for region descriptions)
6. What is the 10-year growth rate for this occupation?

<table>
<thead>
<tr>
<th>Occupational Title</th>
<th>Most Recently Published 10-Year Growth Rate</th>
<th>Region</th>
<th>Oregon</th>
<th>Nation*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservation Scientists</td>
<td>+16.7% / +16.0%</td>
<td>+11.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Sciences Managers</td>
<td>0% / 11.6%</td>
<td>+10.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Scientists</td>
<td>+12.5% / +10.1%</td>
<td>+16.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoologists and Wildlife Biologists</td>
<td>+7.3% / + 11.1%</td>
<td>+15.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foresters</td>
<td>+13.8% / + 8.5%</td>
<td>+10.4%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source of this information: Regional and Oregon data on the Occupational Information Center is on http://www.QualityInfo.org; National data is at http://www.bls.gov/emp/emptab21.htm

7. What is the average annual (replacement and growth) job openings expected over the next 10 years in this occupation?

<table>
<thead>
<tr>
<th>Occupational Title</th>
<th>Average Annual Openings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Region</td>
</tr>
<tr>
<td>Conservation Scientists</td>
<td>0 / 1</td>
</tr>
<tr>
<td>Natural Sciences Managers</td>
<td>0 / 1</td>
</tr>
<tr>
<td>Natural Sciences Managers</td>
<td>0 / 3</td>
</tr>
<tr>
<td>Zoologists and Wildlife Biologists</td>
<td>1 / 1</td>
</tr>
<tr>
<td>Foresters</td>
<td>3 / 4</td>
</tr>
</tbody>
</table>

Source of this information: Regional and Oregon data on the Occupational Information Center is on http://www.QualityInfo.org; National data is at http://www.bls.gov/emp/emptab21.htm;

8. Is a license required by the state of Oregon to perform this occupation?

Yes _____ If yes, how many licenses were held in the most recent year? ______

No ___X____

Source of this information: http://www.QualityInfo.org Look up the occupation at http://www.qualityinfo.org/olmisi/OIC and then at License Information
9. What are the education, work experience, and on the job training typically needed for the related occupation(s)?
(On-the-job Training, Work Experience, Post-secondary, Apprenticeship, Certificate of Completion, Associate,)

<table>
<thead>
<tr>
<th>Occupational Title</th>
<th>Education, work experience or training typically needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservation Scientists</td>
<td>Bachelor's</td>
</tr>
<tr>
<td>Natural Sciences Managers</td>
<td>Bachelor's</td>
</tr>
<tr>
<td>Environmental Scientists</td>
<td>Bachelor's</td>
</tr>
<tr>
<td>Zoologists and Wildlife Biologists</td>
<td>Bachelor's</td>
</tr>
<tr>
<td>Foresters</td>
<td>Bachelor's</td>
</tr>
</tbody>
</table>

*Source of this information:* Occupational Information Center on http://www.QualityInfo.org

10. What are the competitive educational requirements for the related occupation(s)?
(Post-secondary training, Associate, or Bachelor's)

<table>
<thead>
<tr>
<th>Occupational Title</th>
<th>Competitive Educational Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservation Scientists</td>
<td>BS/MS</td>
</tr>
<tr>
<td>Natural Sciences Managers</td>
<td>BS/MS</td>
</tr>
<tr>
<td>Environmental Scientists</td>
<td>BS/MS</td>
</tr>
<tr>
<td>Zoologists and Wildlife Biologists</td>
<td>BS/MS</td>
</tr>
<tr>
<td>Foresters</td>
<td>BS/MS</td>
</tr>
</tbody>
</table>

*Source of this information:* Occupational Information Center on http://www.QualityInfo.org
(OLMIS)
### 11. Potential wages for this occupation

<table>
<thead>
<tr>
<th>Occupational Title</th>
<th>Entry (use 10th percentile if available)</th>
<th>Avg. (use median if available)</th>
<th>High (use 90th percentile if available)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservation Scientists</td>
<td>$24.63 / n/a</td>
<td>$29.88 / n/a</td>
<td>$36.30 / n/a</td>
</tr>
<tr>
<td>Natural Sci. Managers</td>
<td>$34.44 / $32.24</td>
<td>$40.78 / $50.98</td>
<td>$52.02 / $73.61</td>
</tr>
<tr>
<td>Environmental Scientist</td>
<td>n/a / $22.69</td>
<td>n/a / $32.05</td>
<td>n/a / $44.51</td>
</tr>
<tr>
<td>Zoologist/Wildlife Biol</td>
<td>$21.79 / $25.16</td>
<td>$31.36 / $30.82</td>
<td>$37.98 / $36.30</td>
</tr>
<tr>
<td>Forester</td>
<td>n/a / $23.85</td>
<td>n/a / $31.38</td>
<td>n/a / $42.13</td>
</tr>
</tbody>
</table>

**Region**

- **Douglas / Lane**
  - 1. $24.63 / n/a
  - 2. $34.44 / $32.24
  - 3. n/a / $22.69
  - 4. $21.79 / $25.16
  - 5. n/a / $23.85

- **Oregon**
  - 1. $19.38
  - 2. $33.84
  - 3. $22.90
  - 4. $20.26
  - 5. $22.86

**Source of this information:** Oregon and Regional Wage Information publications under the Publications section on http://www.QualityInfo.org
**Note that all of the Associate’s degrees listed below are technician-level A.A.S. degrees and are not directly articulated with OSU’s BS in Natural Resources as this program is designed to be. At present, there is only one other community college (Central Oregon CC – not yet listed by OLMIS) that has a fully OSU-articulated Natural Resources A.S. degree.**

<table>
<thead>
<tr>
<th>School</th>
<th>City</th>
<th><strong>Programs of Training and 2012 Graduates</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Klamath Community College</td>
<td>Klamath Falls</td>
<td>Natural Resources/Conservation, General. Associate Degree 0</td>
</tr>
<tr>
<td>Lane Community College</td>
<td>Eugene</td>
<td>Water, Wetlands, and Marine Resources Management. Associate Degree 4</td>
</tr>
<tr>
<td>Mt Hood Community College</td>
<td>Gresham</td>
<td>Natural Resources/Conservation, General. Associate Degree 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Natural Resources/Conservation, General. Associate Degree 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Range Science and Management. Associate DegreePostsec. 2</td>
</tr>
<tr>
<td>Treasure Valley Community College</td>
<td>Ontario</td>
<td>Wildlife, Fish and Wildlands Science and Management. Associate Degree 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Range Science and Management. Associate Degree 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Natural Resources/Conservation, General. Associate Degree 9</td>
</tr>
</tbody>
</table>

Source of this information: Educational Information Center on http://www.QualityInfo.org
13. Answer the following questions concerning career ladders/career pathways:

a. What are the potential career ladder, or “lattice,” steps or the career pathway for programs completers?
This program will create the middle “step” of the Umpqua Natural Resources Pathway, a UCC partnership with the Phoenix School (local high school), Oregon Youth Conservation Corps, Umpqua Watersheds, Inc., and the Umpqua National Forest on our youth-oriented “Learn, Earn, and Serve” program funded by the USFS and the National Fish and Wildlife Foundation. Students entering the program from area high schools will be able to take their 2-year A.S. from UCC directly into the marketplace, or seamlessly transfer into OSU’s Bachelor of Science program in Natural Resources in their College of Forestry. Moreover, we have 3 field methods courses designed around current agency protocols for field sampling and analysis, an Environmental Dispute Resolution course, and several new lab science courses that may be of interest to agency personnel who just need some additional training to upgrade their skills. Most of the new courses will also be available as Science courses that can be used for the AAOT. We are also in conversation with the Engineering Dept. to use several of the Natural Resources classes in Forest Engineering and Forest Management A.S. programs currently being designed to articulate with OSU’s B.S. programs in those majors.

b. What is the typical education needed for these jobs?
While Natural Resource jobs are available for graduates with Associate degrees, a Bachelor of Science degree greatly increases job opportunities and pay rates. Master of Science degrees will increase the success of graduates as they move up to higher level resource management positions. This program is designed to provide the middle steps in this OSU-articulated pathway.

c. Is training available for related career ladder/pathway occupation(s) and at what types of institutions?
Students who complete the Natural Resources A.S. program will also possess the background to pursue Bachelor’s degrees as Natural Science Managers, Foresters, Soil and Plant Scientists, Wildlife and Fisheries Biologists, Hydrologists, Environmental Scientists and other related professions. As mentioned, we will be working with UCC’s Engineering Dept. to develop two new OSU-articulated programs that will use several of our core courses for their curricula as well. After the roll-out of this program, we will also work toward developing similar degrees that will articulate with Fish and Wildlife B.S. degrees in OSU’s College of Agriculture.


14. Please describe any other labor market information that may be relevant to this program
Turnover because of retirements is expected to be especially high in Natural Resource professions in the coming years as “Baby Boomer” professionals continue to “age out” of the workforce. We also believe that because of our close relationship with specialists in the Forest Service, BLM, ODF&W, the local watershed council and other public land management agencies with whom we will be working closely in the field, that our students will have a “leg up” when it comes to hiring replacements for retiring professionals.
Pending legislation and current trends will require more thorough monitoring and analysis of both site-level and landscape-level data to plan and monitor the ecological practices that will increasingly be used to manage natural resources. Demand for broadly trained ecosystem scientist/managers will therefore increase in the public land management agencies to guide management activities, and also in private industry to meet state and federal standards.

Enrollments in OSU’s Natural Resources Department have grown every year since its inception, so UCC students will progress to a robust and vibrant program. Positive labor market trends have been noted above, and according to a recent report in The Oregonian (1/14/2015), OSU has just kicked off a $30 million fundraising effort as part of a planned $60 million expansion of its College of Forestry. It wants to double enrollment to 2,000 students due to projected increases in the demand for more trained Natural Resource professionals.

New course outlines are in a separate file.
Natural Resources: Landscape Monitoring Option
Proposed Courses:

<table>
<thead>
<tr>
<th>Course #</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WR 121</td>
<td>English Comp. Intro to Argument</td>
<td>4</td>
</tr>
<tr>
<td>WR 227</td>
<td>Technical Report Writing</td>
<td>4</td>
</tr>
<tr>
<td>SP 111</td>
<td>Fundamentals of Public Speaking</td>
<td>4</td>
</tr>
<tr>
<td>MTH 111</td>
<td>Elementary Functions</td>
<td>5</td>
</tr>
<tr>
<td>BI 211</td>
<td>Principles of Biology I</td>
<td>5</td>
</tr>
<tr>
<td>BI 212</td>
<td>Principles of Biology II</td>
<td>5</td>
</tr>
<tr>
<td>BI 213</td>
<td>Principles of Biology III</td>
<td>5</td>
</tr>
<tr>
<td>BOT 203</td>
<td>Field Botany</td>
<td>4</td>
</tr>
<tr>
<td>CH 104 or 221</td>
<td>General Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>ENG 230</td>
<td>Environmental Literature</td>
<td>4</td>
</tr>
<tr>
<td>GIS 134</td>
<td>Introduction to GIS</td>
<td>3</td>
</tr>
<tr>
<td>GIS 135</td>
<td>Geographical Information Systems II</td>
<td>3</td>
</tr>
<tr>
<td>MTH 243</td>
<td>Intro to Statistics</td>
<td>5</td>
</tr>
<tr>
<td>NR 201</td>
<td>Intro to Natural Resources</td>
<td>3</td>
</tr>
<tr>
<td>NR 205</td>
<td>Soil Science</td>
<td>4</td>
</tr>
<tr>
<td>NR 221</td>
<td>Water Resource Science</td>
<td>4</td>
</tr>
<tr>
<td>NR 240</td>
<td>Forest Ecosystems</td>
<td>3</td>
</tr>
<tr>
<td>NR 241</td>
<td>Field Dendrology</td>
<td>4</td>
</tr>
<tr>
<td>NR 242</td>
<td>Ecosystems of SW Oregon and N California (hybrid)</td>
<td>4</td>
</tr>
<tr>
<td>NR 243</td>
<td>Historical Ecology of PNW Landscapes</td>
<td>3</td>
</tr>
<tr>
<td>NR 251</td>
<td>Principles of Fish and Wildlife Conservation</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>NR 255A</td>
<td>Landscape Monitoring: Fall</td>
<td>2</td>
</tr>
<tr>
<td>NR 255B</td>
<td>Landscape Monitoring: Winter</td>
<td>2</td>
</tr>
<tr>
<td>NR 255C</td>
<td>Landscape Monitoring: Spring</td>
<td>2</td>
</tr>
<tr>
<td>NR 295</td>
<td>Environmental Dispute Resolution</td>
<td>3</td>
</tr>
<tr>
<td>PE 255</td>
<td>Wilderness Survival</td>
<td>2</td>
</tr>
</tbody>
</table>

**Total credits for Program**: 95

Courses in **BOLD** typeface have been developed for this program and were approved in Nov. 2014.

Courses in **BOLD ITALICS** are proposed for approval in April 2015.

New Course Outlines Attached Below
Course No: NR 201  
Course Credit: 3  
Lecture Hrs/wk: 3  
Lab Hrs/Wk: 
Lecture/Lab Hrs/Wk: 
Practicum Hrs/Wk: 
Clock Hours: 33/term  
Length of Course: 11 wks.  
Banner enforced Prerequisite: None  
Instructor enforced Prerequisite: 
Co-Requisite: 
Load Factor: 3 ILCs  
Activity Code: 100  
CIPS: 260101

Course Title: **Introduction to Natural Resources**  
Developed By: Bryan Benz and Ken Carloni  
Development Date: Nov. 2014  
Revision Date:  
Review Date:  

**COURSE DESCRIPTION:**  
Introductory course for Natural Resources majors. Overview of the underlying principles and complexities involved in managing natural resources of the Pacific Northwest. Investigation of major natural resource issues of the region. Development of critical thinking and collaboration skills useful in seeking solutions.

**COURSE OUTCOMES**  
Upon completion of the course, you will be able to:

- Identify and describe key characteristics and processes that characterize renewable natural resources, with an emphasis on Oregon, Washington and Northern California.
- Recognize and describe key knowledge, skills, and attitudes you will need to become a successful natural resource manager or specialist.
- Identify and discuss several major natural resource issues that you are likely to face in your career.
- Identify and discuss basic principles and applied techniques that will help you address important issues throughout your career.
- Locate and understand written and multi-media material public and private sources, and critically assess factual and value statements related to natural resources.
- Demonstrate critical thinking and effective collaboration skills while communicating in verbal, written and multi-media modes.
- Effectively communicate to diverse audiences how sustainable management practices can be used to resolve resource management conflicts.
COURSE OUTLINE

- Introduction to natural resources and the concept of sustainability
- History of resource exploitation; natural resources as a “commons”; public attitudes
- Ecological foundations and habitat principles
- Water and soil resources and management
- Forest resources and management
- Rangeland resources and management
- Endangered species and resource extraction
- Natural resource economics
- Sustainable development and urban ecology
Course Title: **Soil Science**
Developed By: Karen R. Carroll, M.S.
Development Date: 11/6/14
Revision Date:
Review Date:

**COURSE DESCRIPTION:**
This course will provide information and experience in soil development, physical properties of soil, soil organisms, naming of soils, and how land management practices affect soil quality and sustainability.

**COURSE OUTCOMES:**

Upon completion of NR 205, students will be able to:

- Describe the scientific method
- Determine soil texture
- Determine soil color, structure, and other physical properties
- Explain the factors controlling soil development and describe how each of these factors has contributed to a soil that exists today
- Explain the chemical processes that control the release of nutrients from the soil matrix, including the role of soil pH
- Explain controls on water availability and water movement in a soil profile
- Explain the roles of macrofauna, microfauna, and microflora in processing soil organic matter
- Evaluate how management practices of land affect soil quality and sustainability
- Explain where and how to find information about soils using the NRCS Web-Based Soil Survey
- Perform calculations involving soil physical properties, water content, and soil nutrient availability
REQUIRED TEXT/MATERIALS:


COURSE OUTLINE:

Week:

1. Scientific Method; Soils Around Us
2. Formation of Soils; Soil Classification
3. Physical Properties of Soil; Characteristics and Behaviors
4. Soil Water, Air, and Temperature
5. Soil Colloids
6. Acidity, Alkalinity, and Salinity
7. Soil Organisms and Organic Matter
8. Nutrient Cycles and Fertility
9. Soil Erosion and Pollution
10. Soil Management Practices
11. Final Examination
Course Title: **Water Resource Science**
Developed By: Mick Davis, Ph.D.
Development Date: Nov. 2014
Revision Date:
Review Date:

**COURSE DESCRIPTION:**
This course will cover the basic physics principles which determine the hydrological properties of natural water resources; the role these properties play in shaping the local ecology; and methods used to measure, monitor, and model these properties for the purposes of water resource management and restoration.

**COURSE OUTCOMES:**
Upon successful completion of this course the successful student will have demonstrated the ability to

1) Describe, analyze, and apply the following concepts in order to solve problems, make predictions, acquire data, and analyze data.
   a. Graphs, diagrams, and equations for 1-D motion involving constant acceleration of particles and fluids.
   b. Forces and their effect on the motion of solid objects and fluids. Gravitation, normal, fluid drag, and friction forces.
   c. Momentum, conservation of momentum, the impulse momentum theorem and its application to fluid flow.
   d. Kinetic and potential energy, work, and conservation of energy in conservative and non-conservative systems, including flowing fluids.
   e. Hydrostatic properties of non-compressible fluids.
   f. Bernoulli’s principle, viscosity, Reynold’s number, turbulence
   g. Temperature, thermal energy, heat transfer mechanisms, Newton’s Law of cooling and application of these to analysis of water resource temperature.
h. The wave property of light, absorption coefficients, photon energies and the role these play in radiative thermal energy transfer to water.

2) Know, define, discuss, and use in problem solving the SI units, metric prefixes and physical constants related to concepts 1.a-1.h listed above.

3) Know, describe, and show proficiency in current standard methods for measurement and monitoring of the following water resource properties:
   a. GPS location measurement and reporting in UTM and Lat/Long coordinate systems.
   b. Stream width and depth profiles
   c. Average and surface stream flow velocity and flow velocity profiles
   d. Conductivity
   e. Turbidity
   f. Surface wind speed
   g. Surface incident light intensity
   h. Average stream temperature and stream temperature profiles.

4) Think critically, problem solve, and make predictions based on physical concepts in 1.a-1.h.

5) Clearly communicate predictions, data acquisition methods, and results of data analysis through written problem solutions, written answers in laboratory/field guides, formal laboratory/field reports, project reports, oral presentations, and classroom discussions.

6) Make use of laboratory and field equipment to properly and safely collect experimental data.

7) Make use of calculators and spreadsheet software in numeric problem solving and data analysis

8) Make use of basic algebra (100-level) in problems solving, experimental design, and data analysis.

9) Make practical use of the scientific method in the laboratory and in the field.

10) Work effectively in a small group in the laboratory and in the field.

11) Apply the scientific method and outcomes 1-10, for the purpose of experimental design and execution.
COURSE OUTLINE

Week 1: Kinematics + Measurement and Uncertainty

I) Position and Position Measurement
   i. Euclidean Coordinate Systems
   ii. UTM Coordinate System
   iii. Lat/Long Coordinate System
   iv. Position as a vector
   v. Resolving position vector components
      1. DEMO: Multilateration

II) Velocity and Velocity Measurement
    i. Speed
    ii. Velocity
    iii. Resolving velocity vector components
    iv. Lagrangian vs. Eulerian reference frames

III) Acceleration and Acceleration Measurement
    i. Acceleration as rate of change of velocity
    ii. Acceleration as a vector
    iii. 4 cases for the sign of the acceleration

IV) Lab 1: Position and Velocity Measurements (FIELD LAB)
    i. Measuring position with GPS
    ii. Determining uncertainty in position measurement
    iii. Calculating velocity from GPS position and time measurements
    iv. Estimating uncertainty in velocity calculation
    v. Calculating acceleration from position and time measurements
    vi. Formal Field Action Report

Week 2: Newton’s Laws of Motion

I) Newton’s 1st and 3rd Laws
   i. Inertia
   ii. Mass
   iii. Density
   iv. Fluid Density
   v. Force Pairs
      1. DEMOS: Hanging Mass + Accelerometer
      2. DEMO: Dueling Force Sensors
II) Newton’s 2nd Law  
i. \text{F=ma for single forces}  
ii. Balanced and unbalanced forces  
iii. Vector addition of Forces  
iv. Newton’s 2nd Law

III) The gravitational force  
i. Free fall acceleration due to gravity  
ii. Calculating the gravitational force  
iii. Mass vs. Weight  
iv. Calculating the Weight per Volume  
   1. DEMO: Paper vs. book fall-time

IV) Lab 2: Determining Flow Velocity and Flow Volume (FIELD LAB)  
i. Measuring stream width and depth  
ii. Measuring stream depth profile  
iii. Determining uncertainty in width and depth measurements  
iv. Measuring average surface velocity  
v. Measuring a flow velocity profile  
vi. Flow velocity via salt or dye slugs  
vii. Estimating uncertainty in velocity calculation  
viii. Formal Field Action Report

Week 3: Hydrostatics

I) Forces and Motion Tutorial

II) Buoyant Force and Archimedes Principle  
i. Conceptual derivation  
ii. Relation to density  
iii. Specific gravity definition and calculation

III) Pascal’s Principle  
i. Pressure  
ii. Pressure in Confined, Incompressible Fluids  
iii. Hydraulic Machines

IV) Lab 3: Archimedes’ Principle  
i. Determining material density 2-ways  
ii. Determining material specific gravity 2-ways  
iii. Understanding average density  
iv. Calculating the buoyant force on floating log
v. Calculating the buoyout force on an anchored log
vi. Calculating the buoyant force on a boulder

**Week 4: Energy Conservation**

I) Normal Force and Friction Force
   i. Static Friction
   ii. Kinetic Friction
   iii. On inclined geometries
   iv. Resolving force vector components
   v. Frictional force for constant velocity flow

II) Energy
    i. Kinetic Energy
    ii. Gravitational Potential Energy
    iii. Conservation of Mechanical Energy
    iv. Flow acceleration and velocity in the absence of friction

III) Work
     i. Work by Conservative forces
     ii. Work-Energy Theorem
     iii. Calculation of ping-pong ball speed
     iv. Work by Non-conservative forces
     v. Conservation of Total Energy
     vi. Work due to friction
     vii. Mechanical-Thermal Energy conversion by friction
         1. DEMO: Ping Pong Ball Cannon

IV) Lab 4: Energy Dissipation in fluid flow
    i. Tracer particles as a flow velocity measurement tool
    ii. Video recording as a position + velocity measurement tool
    iii. Verifying Manning’s Formula
    iv. Quantifying energy dissipation in fluid flow

**Week 5: Hydrodynamics I**

I) Bernoulli’s Principle
   i. As conservation of mechanical energy in disguise
   ii. Applications to carburetors, wings, sails, atomizers
   iii. Calculation of lift force on an anchored log
   iv. Calculation of lift force on a boulder
       1. DEMO: Hair Dryer + Ping-Pong ball
II) Impulse-Momentum
   a. Momentum
   b. Momentum conservation
   c. Impulse-Momentum Theorem
   d. Impulse-Momentum Theorem for analysis of erosion and erosion control

III) Drag Force
   i. In air
   ii. In Viscous fluids
   iii. Reynolds number dependence
       1. DEMO: V^2 dependence for coffee filters

IV) Lab 5: Drag force
   i. Modeling drag force in air
   ii. Measuring drag force in air
   iii. Measuring drag force in water
   iv. Determining velocity dependence of drag force in water
   v. Calculating Drag force on a log
   vi. Calculating Drag force on a boulder

**Week 6: Hydrodynamics II**

I) Viscosity and Reynold’s Number
   i. As a general fluid property
   ii. Measuring viscosity
   iii. Viscous Flow
   iv. Reynold’s Number
   v. Life at low Reynold’s Number
   vi. Life at Medium Reynolds Number
   vii. Life at Large Reynolds Number
   viii. Turbulence

II) Guest Lecturer: Ken, Umpqua Watersheds and UCC biology professor
   i. Effects of flow velocity, woody habitat, temperature, turbidity, turbulence on stream ecology.

III) Guest Lecturer: Sydney, BLM Hydrologist and former UCC physics 201 student
   i. Woody debris habitat restoration case studies

IV) Lab 6: Small Scale simulation stream flow via Reynold’s number matching
   i. Formal Laboratory Report
Week 7: Light and Energy

I) Hydrostatics/Hydrodynamics Tutorial

II) Properties of Light
   i. Wave-Particle duality
   ii. Electromagnetic spectrum
   iii. Energy in photons
   iv. Beer’s Law
   v. Scattering and absorption coefficients
   vi. Direct and scattered light energy absorption by water
   vii. Effects of vegetation on incident light energy
       1. DEMO: Beers Law in chalky water

III) Turbidity
   i. Turbidity measurement
   ii. Effects of turbidity on absorption and scattering of light by water
   iii. Direct ecological effects of turbidity changes

IV) Lab 7: Beer’s Law for vegetation and turbidity (FIELD LAB)
   i. Measuring incident light intensity
   ii. Determining absorption/scattering coefficients of vegetative covering
   iii. Measuring average stream turbidity and turbidity profiles
   iv. Formal Field Action Report

Week 8: Thermodynamics

I) Light Tutorial

II) Thermal Energy, Temperature
   i. Definitions
   ii. Measurement
   iii. Long term monitoring methods

III) Heat
   i. Heat as transfer of thermal energy driven by $\Delta T$
   ii. Conduction
   iii. Radiation
   iv. Convection
   v. Calculating final temperature of fluid mixtures (calorimetry)
vi. Calculating final stream temperature after mixing with hyporheic flow

IV) Lab 8: Thermodynamics
   i. Predicting the final temperature of fluid mixtures
   ii. Measuring the effects of particle concentration on radiative heating rate
   iii. Measuring the effects of stream bed color/material on radiative heating rate

Week 9: Convection

I) Phase Changes
   i. Sublimation-Deposition
   ii. Melting-Freezing
   iii. Evaporation-Condensation
   iv. Latent heats
       1. DEMO: Can crushing

II) Ideal Gas Law
   i. Microscopic Picture
   ii. Non-ideal behavior
   iii. Vapor Pressure
   iv. Saturation Vapor Pressure
   v. Relative Humidity/Dewpoint

III) Convection
   i. Conduction-Convection
   ii. Evaporation-Convection
   iii. Bowen Ratio and limitations
   iv. Forced Convection

IV) Lab 9: Newton’s Law of Cooling
   i. Newton’s Law of cooling
   ii. Verifying applicability of Newton’s Law of Cooling to hot/cold liquid
   iii. The effects of Natural vs. Forced Convection on exponential heating and cooling rates.
   iv. Begin work on final projects
       1. Woody debris habitat restoration modeling and small scale simulation.
       OR
       2. Measuring and modeling the relative effects of vegetation cover on the diurnal heating and cooling rates of water.
Week 10: Stream Temperature Dynamics

I) Heat Budget Models
   i. Advantages
   ii. Limitations
   iii. Applications
   iv. Work on final projects

II) Guest Lecturer: Timber Industry Representative??
   i. Finding a balance between industry and conservation
   ii. Continue final projects

III) Guest Lecturer: Jeremy Groom, Statistician, Oregon Department of Forestry??
   i. Types of natural resource data and metrics
   ii. Common data analysis methods
   iii. Continue final projects

IV) Lab 10: Riparian climate/stream flow study site visitation with Maryanne Reiter, Weyerhaeuser (FIELD LAB)
   i. Wind speed
   ii. Light intensity
   iii. Temperature
   iv. Humidity
   v. Flow volume

Week 11: Final Project Oral Reports
1. Woody debris habitat restoration modeling and small scale simulation.
   OR
2. Measuring and modeling the relative effects of vegetation cover on the diurnal heating and cooling rates of water.
Course Title: **Forest Ecosystems**  
Developed By: Ken Carloni, Ph.D.  
Development Date: Nov. 2014  
Revision Date:  
Review Date:  

**COURSE DESCRIPTION:**  
Principles of ecosystem dynamics in forested communities, landscapes and bioregions.  
Coevolution of competition, predation and mutualism. Energy flow, nutrient cycles and feedback controls. The effects of disturbance and succession on biodiversity and habitat stability through time.

**COURSE OUTCOMES:**  
Students who complete this course will be able to:

- Describe the components and processes of forest ecosystems at multiple scales.
- Explain the flow of energy and the cycling of nutrients in ecosystems, and discuss the factors that influence these processes.
- Explain the influence of climate, soils, topography, and disturbance agents on ecosystem structure and function.
- Explain the relationships between the processes of disturbance and forest succession, and discuss their effects on ecosystem structure and function including stand demographics, soils, water resources, wildlife habitat, carbon storage and biodiversity.
- Discriminate among those management practices that accumulate carbon, store water, produce sustainable products, and increase biodiversity from those that don’t.
- Recognize effective solutions to ecological problems and communicate them clearly.
COURSE OUTLINE:

- Fundamental Ecosystem Concepts
- Structure and Function of Forest Ecosystems at Multiple Scales
- Climate, Soils, Topography and Ecoregions
- Coevolution of Populations and Communities
- Disturbance and Succession in Forest Ecosystems
- Energy, Productivity and Biomass
- Biogeochemical Cycles
- Landscape Ecology: Fragmentation, Connectivity, and Landscape Heterogeneity
- Ecosystem Services
Course Title: **Field Dendrology**
Developed By: Ken Carloni, Ph.D. and Bryan Benz, M.S.
Development Date: Nov. 2014
Revision Date:
Review Date:

**COURSE DESCRIPTION:**

Identification of the principal forest trees of North America, emphasizing trees and shrubs of the Pacific Northwest. Other topics include the ranges over which these species grow, their structure and function, important ecological characteristics, and principal uses. We will also survey forested biomes of the world. Field trips required on and off campus.

**COURSE OUTCOMES:**

Students who successfully complete this course will be able to:

- Identify economically and culturally important native tree and shrub species found in Washington, Oregon and Northern California.
- Describe the habitats, ranges, and principle uses of these species.
- Explain the general anatomy and physiology of woody plant species.
- Identify key vegetation indicators of habitat types in Southwestern Oregon
- Describe the forested biomes of the world.
COURSE OUTLINE:

- Woody plant families and important genera
- Using dichotomous keys
- Structure and function of woody plants
- Ecological functions of woody plant species in their habitats
- Role of woody plant in forest succession
- Documenting trees and shrubs in the field
- Forested biomes of the world with emphasis on Northwestern bioregions
### Course Title: Ecosystems of Southwest Oregon and Northern California

**Developed By:** Ken Carloni  
**Revision Date:**  
**Review Date:**

**COURSE DESCRIPTION:**

This is a hybrid course taught partly online and partly during a 6 day bus tour of Southwestern Oregon and Northern California. Resources for learning the distributions, unique species compositions, population interactions, nutrient and energy cycles, disturbance processes, and ecological histories of the landscapes of this region will be presented online. The bus tour begins immediately after the spring term ends, and will emphasize applications of this information during stops in the Siskiyou Mountains, Smith River, Redwood National Park, Trinidad State Beach, the Trinity River, Lassen Volcanic National Park, McArthur-Burney Falls State Park, Lava Beds National Monument, Crater Lake National Park, the North Umpqua River, and other sites of ecological interest. Students should be reasonably fit and prepared to hike several miles over the course of the tour on easy to moderately difficult trails.
COURSE OUTCOMES:

Students who successfully complete this course will be able to:

- Map the major ecoregions of SW Oregon and N California.
- Describe how climate, soils, and physiography influence the structure and function of ecological communities.
- Describe the region’s significant disturbance agents, explain the process of ecological succession, and recognize species commonly associated with pioneer and climax communities.
- Recognize forest, shrub, grassland and other community types of SW Oregon and N California based on their geographic location and species composition.
- Identify the dominant plant species found in each ecosystem we visit.
- Recognize the interrelationships between pattern and process in the ecosystems we visit.

COURSE OUTLINE:

- Use of dichotomous keys, reference resources
- Physical environment of the region
- Ecosystem pattern and process at multiple scales
- Disturbance processes, ecological succession, and Historic Range of Variability
- Dominant plant species of the region’s ecosystems
- Types and distributions of:
  - Conifer forests
  - Hardwood forests
  - Shrub and steppe communities
  - Grasslands and savannas
  - Wetland and riparian habitats
  - Coastal communities
- Field tour journal
- Final project
Course Title: **Historical Ecology of Pacific Northwest Landscapes**
Developed By: Ken Carloni
Development Date: Feb. 2015
Revision Date:
Review Date:

**COURSE DESCRIPTION:**

Students will learn about changes in the landscapes of the Pacific Northwest from the end of the last ice age to the present with an emphasis on Southwestern Oregon and Northern California. We will examine the changing uses of the environment by a succession of cultures, and their effects on landscape structure and function by using a range of tools to analyze archaeological, historical and ecological data to reconstruct historic landscapes.

**COURSE OUTCOMES**

Upon completion of the course, you will be able to:

- Trace the major events in the ecological and cultural history of the Pacific Northwest from the late Pleistocene to the present.
- Describe the methods and data used to reconstruct historic landscape conditions.
- Use historical, archaeological and ecological data to research and reconstruct historic landscape conditions.
- Apply the concept of Historic Range of Variability to landscapes through time.
- Analyze the impacts of the succession of cultures on landscape structure and function in SW Oregon and N California.
COURSE OUTLINE

- Introduction to the Theory and Practice of Historical Ecology
- Historic Range of Variability
- Life After the Ice Age and the Peopling of the Americas
- Cultural Evidence I: Archaeology and Ethnobiology
- Cultural Evidence II: Historic Documents, Images and Data.
- Ecological Evidence I: Dendrochronology and Vegetation Structure
- Ecological Evidence I: Pollen, Phytoliths and Geomorphology
- The Little River Watershed: Indians, Fire and the Land
- Natural Resource Conservation: Fatesheds and Management Options
Course No: NR 251  
Course Credit: 3  
Lecture Hrs/wk: 3  
Lab Hrs/Wk:  
Lecture/Lab Hrs/Wk:  
Practicum Hrs/Wk:  
Clock Hours: 33/term  
Length of Course: 11 wks.  
Banner enforced Prerequisite:  
Instructor enforced Prerequisite: Recommended: A previous course in Biology or Natural Resources  
Co-Requisite:  
Load Factor: 3 ILCs  
Activity Code: 100  
CIPS: 260101

Course Title: **Principles of Fish and Wildlife Conservation**  
Developed By: Ken Carloni  
Development Date: Feb. 2015  
Revision Date:  
Review Date:

**COURSE DESCRIPTION:**

History of conservation and natural resource use; ecological principles, and social and economic limitations of conservation; principles and practices of wildlife and fisheries management; role of research in management.

**COURSE OUTCOMES**

Upon completion of the course, you will be able to:

- Describe the basic scientific principles underlying the management and conservation of fish and wildlife.
- Outline the legal, social, cultural, and political institutions that affect wildlife conservation and management.
- Explain how scientific knowledge and research are used in the conservation and management of our natural resources.
- Develop and apply a vocabulary related to wildlife and fish ecology.
COURSE OUTLINE

I. Social and political aspects of wildlife conservation and management
   - History of fisheries and wildlife conservation in US
   - Human Attitudes – Values & Philosophy
   - Economics of Wildlife and Fish Conservation
   - Overabundant Wildlife

II. Scientific principles of wildlife management
   - Ecological Principles
   - Evolutionary Biology
   - Population Dynamics
   - Endangered Species
   - Conservation Biology
   - Exotic Species
   - Disease Ecology

III. Scientific principles of ecosystem management
   - Principles of Fish and Wildlife Harvest Management
   - Ecosystem Management
   - Landscape Ecology
   - Marine Systems
   - Agricultural Ecosystems
Course No: NR 255A/B/C
Course Credit: 2
Lecture Hrs/wk: 1
Lab Hrs/Wk:
Lecture/Lab Hrs/Wk: 3
Practicum Hrs/Wk:
Clock Hours: 44
Length of Course: 11 wks.
Banner enforced Prerequisite: NR 251, PE 255
Instructor enforced Prerequisite:
Co-Requisite: NR 251, PE 255
Load Factor: 3.1 ILCs
Activity Code: 100
CIPS: 260101

Course Title: Landscape Monitoring
Developed By: Ken Carloni
Development Date: Feb. 2015
Revision Date:
Review Date:

COURSE DESCRIPTION:
The NR 255 series of courses emphasize sampling design and methods for quantifying physical, aquatic, and terrestrial resources in the Pacific Northwest with geographic emphasis on southwestern Oregon and northern California. Students will learn and apply standard field and laboratory protocols used by the US Forest Service, the Bureau of Land Management, the Oregon Dept. of Fish and Wildlife, the Oregon Department of Environmental Quality, and other state and national land and resource management agencies. NR 255A is offered Fall term, and will focus on resources typically monitored from late September to early December. NR 255B focuses on resources typically monitored during the Winter term from early January through late March, and NR 255C is offered Spring term with emphasis on monitoring protocols typically conducted from early April through early June.

COURSE OUTCOMES:
Upon successful completion of NR 255A, NR 255B, or NR 255C students will be able to:

- Describe how monitoring programs are used to address research questions and management issues in population, habitat and ecosystem management; restoration ecology; and sustainable resource management.
- Explain concepts of systematic field sampling and data collection.
Use common monitoring tools and techniques, and know the circumstances under which they are most effectively applied.
Collect data in a systematic manner employing a variety of standard sampling protocols used by local and regional agency professionals.
Demonstrate proficiency in basic data handling, interpretation, display, and communication technologies using a variety of presentation media.

COURSE OUTLINE

- Introduction to landscape monitoring.
- Monitoring program design and implementation.
- Endangered, threatened and other categories of species of concern in the PNW.
- Data analysis and presentation
- Use of equipment and protocols for measuring ecological parameters that may include (but are not limited to):
  - Water quality including pH, temperature, dissolved oxygen, conductivity, turbidity, and flow rate.
  - Stream function including macroinvertebrate diversity, spawning substrate and vertebrate species surveys.
  - Snag and down wood inventories.
  - Small mammal/prey-base monitoring.
  - Vegetation surveys.
  - Aquatic and terrestrial mollusk surveys.
  - Snorkeling for salmonids, amphibians and other aquatic species
  - Owl, murrelet, and neotropical bird surveys
  - Tree climbing for red tree vole, lichens, and other Survey and Manage species under the Northwest Forest Plan.
  - Trail cameras and radio telemetry.
  - Invasive species presence/absence.
Course No: **NR 255A**

- **Course Credit:** 2
- **Lecture Hrs/wk:** 1
- **Lab Hrs/Wk:**
- **Lecture/Lab Hrs/Wk:** 3
- **Practicum Hrs/Wk:**
- **Clock Hours:** 44
- **Length of Course:** 11 wks.
- **Banner enforced Prerequisite:** NR 251, PE 255
- **Instructor enforced Prerequisite:**
- **Co-Requisite:** NR 251, PE 255
- **Load Factor:** 3.1 ILCs
- **Activity Code:** 100
- **CIPS:** 260101

Course Title: **Landscape Monitoring: Fall**

Developed By: Ken Carloni

Development Date: Feb. 2015

Review Date:

**COURSE DESCRIPTION:**

The NR 255 series of courses emphasize sampling design and methods for quantifying physical, aquatic, and terrestrial resources in the Pacific Northwest with geographic emphasis on southwestern Oregon and northern California. Students will learn and apply standard field and laboratory protocols used by the US Forest Service, the Bureau of Land Management, the Oregon Dept. of Fish and Wildlife, the Oregon Department of Environmental Quality, and other state and national land and resource management agencies. **NR 255A** is offered Fall term, and will focus on resources typically monitored from late September to early December.

**COURSE OUTCOMES:**

Upon successful completion of NR 255A, students will be able to:

- Describe how monitoring programs are used to address research questions and management issues in population, habitat and ecosystem management; restoration ecology; and sustainable resource management.
- Explain concepts of systematic field sampling and data collection.
- Use common monitoring tools and techniques, and know the circumstances under which they are most effectively applied.
- Collect data in a systematic manner employing a variety of standard sampling protocols used by local and regional agency professionals.
• Demonstrate proficiency in basic data handling, interpretation, display, and communication technologies using a variety of presentation media.

COURSE OUTLINE

• Introduction to landscape monitoring.
• Monitoring program design and implementation.
• Endangered, threatened and other categories of species of concern in the PNW.
• Data analysis and presentation
• Use of equipment and protocols for measuring ecological parameters that may include (but are not limited to):
  o Water quality including pH, temperature, dissolved oxygen, conductivity, turbidity, and flow rate.
  o Stream function including macroinvertebrate diversity, spawning substrate and vertebrate species surveys.
  o Snag and down wood inventories.
  o Small mammal/prey-base monitoring.
  o Vegetation surveys.
  o Aquatic and terrestrial mollusk surveys.
  o Snorkeling for salmonids, amphibians and other aquatic species
  o Owl, murrelet, and neotropical bird surveys
  o Tree climbing for red tree vole, lichens, and other Survey and Manage species under the Northwest Forest Plan.
  o Trail cameras and radio telemetry.
  o Invasive species presence/absence.
Course No: NR 255B
Course Credit: 2
Lecture Hrs/wk: 1
Lab Hrs/Wk: 
Lecture/Lab Hrs/Wk: 3
Practicum Hrs/Wk: 
Clock Hours: 44
Length of Course: 11 wks.
Banner enforced Prerequisite: NR 251, PE 255
Instructor enforced Prerequisite: 
Co-Require: NR 251, PE 255
Load Factor: 3.1 ILCs
Activity Code: 100
CIPS: 260101

Course Title: Landscape Monitoring: Winter
Developed By: Ken Carloni
Development Date: Feb. 2015
Revision Date:
Review Date:

COURSE DESCRIPTION:

The NR 255 series of courses emphasize sampling design and methods for quantifying physical, aquatic, and terrestrial resources in the Pacific Northwest with geographic emphasis on southwestern Oregon and northern California. Students will learn and apply standard field and laboratory protocols used by the US Forest Service, the Bureau of Land Management, the Oregon Dept. of Fish and Wildlife, the Oregon Department of Environmental Quality, and other state and national land and resource management agencies. NR 255B focuses on resources typically monitored during the Winter term from early January through late March.

COURSE OUTCOMES:

Upon successful completion of NR 255B, students will be able to:

- Describe how monitoring programs are used to address research questions and management issues in population, habitat and ecosystem management; restoration ecology; and sustainable resource management.
- Explain concepts of systematic field sampling and data collection.
- Use common monitoring tools and techniques, and know the circumstances under which they are most effectively applied.
- Collect data in a systematic manner employing a variety of standard sampling protocols used by local and regional agency professionals.
• Demonstrate proficiency in basic data handling, interpretation, display, and communication technologies using a variety of presentation media.

COURSE OUTLINE

• Introduction to landscape monitoring.
• Monitoring program design and implementation.
• Endangered, threatened and other categories of species of concern in the PNW.
• Data analysis and presentation
• Use of equipment and protocols for measuring ecological parameters that may include (but are not limited to):
  o Water quality including pH, temperature, dissolved oxygen, conductivity, turbidity, and flow rate.
  o Stream function including macroinvertebrate diversity, spawning substrate and vertebrate species surveys.
  o Snag and down wood inventories.
  o Small mammal/prey-base monitoring.
  o Vegetation surveys.
  o Aquatic and terrestrial mollusk surveys.
  o Snorkeling for salmonids, amphibians and other aquatic species
  o Owl, murrelet, and neotropical bird surveys
  o Tree climbing for red tree vole, lichens, and other Survey and Manage species under the Northwest Forest Plan.
  o Trail cameras and radio telemetry.
  o Invasive species presence/absence.
Course No: NR 255C
Course Credit: 2
Lecture Hrs/wk: 1
Lab Hrs/Wk:  
Lecture/Lab Hrs/Wk: 3
Practicum Hrs/Wk:  
Clock Hours: 44
Length of Course 11 wks.
Banner enforced Prerequisite: NR 251, PE 255
Instructor enforced Prerequisite:  
Co-Requisite: NR 251, PE 255
Load Factor: 3.1 ILCs
Activity Code: 100
CIPS: 260101

Course Title: **Landscape Monitoring: Spring**
Developed By: Ken Carloni
Development Date: Feb. 2015
Revision Date:
Review Date:

**COURSE DESCRIPTION:**

The NR 255 series of courses emphasize sampling design and methods for quantifying physical, aquatic, and terrestrial resources in the Pacific Northwest with geographic emphasis on southwestern Oregon and northern California. Students will learn and apply standard field and laboratory protocols used by the US Forest Service, the Bureau of Land Management, the Oregon Dept. of Fish and Wildlife, the Oregon Department of Environmental Quality, and other state and national land and resource management agencies. NR 255C is offered Spring term with emphasis on monitoring protocols typically conducted from early April through early June.

**COURSE OUTCOMES:**

Upon successful completion of 255C, students will be able to:

- Describe how monitoring programs are used to address research questions and management issues in population, habitat and ecosystem management; restoration ecology; and sustainable resource management.
- Explain concepts of systematic field sampling and data collection.
- Use common monitoring tools and techniques, and know the circumstances under which they are most effectively applied.
- Collect data in a systematic manner employing a variety of standard sampling protocols used by local and regional agency professionals.
- Demonstrate proficiency in basic data handling, interpretation, display, and communication technologies using a variety of presentation media.
COURSE OUTLINE

- Introduction to landscape monitoring.
- Monitoring program design and implementation.
- Endangered, threatened and other categories of species of concern in the PNW.
- Data analysis and presentation
- Use of equipment and protocols for measuring ecological parameters that may include (but are not limited to):
  - Water quality including pH, temperature, dissolved oxygen, conductivity, turbidity, and flow rate.
  - Stream function including macroinvertebrate diversity, spawning substrate and vertebrate species surveys.
  - Snag and down wood inventories.
  - Small mammal/prey-base monitoring.
  - Vegetation surveys.
  - Aquatic and terrestrial mollusk surveys.
  - Snorkeling for salmonids, amphibians and other aquatic species
  - Owl, murrelet, and neotropical bird surveys
  - Tree climbing for red tree vole, lichens, and other Survey and Manage species under the Northwest Forest Plan.
  - Trail cameras and radio telemetry.
  - Invasive species presence/absence.
Course Title: Environmental Dispute Resolution
Developed By: Jim Caplan
Development Date: Nov. 2014

COURSE DESCRIPTION:
This course examines natural resource-based conflicts on public and private lands, and presents strategies to resolve them. Analysis of root causes of environmental gridlock, including important values people hold towards the environment and development, and the tendency of groups and individuals to rely on traditional and well-understood methods for dispute resolution such as the courts and electoral and legislative processes. Course will focus on why disputants and the interested public find themselves increasingly frustrated by gridlock and dismayed at gridlock’s effects on both environmental quality and local and regional economies, and how these frustrations are leading to the use of alternative resolution methods.

COURSE OUTCOMES:
At the completion of this course, you will be able to:

- Understand the origins of the environmental movement in America and how resource development has evolved along with it
- Identify and understand common values people hold towards natural resources and their protection or development; and also understand how people fit into various values-sharing, stakeholder communities
- Understand common human responses to conflict and common approaches to dealing with them; and also see environment conflicts through the eyes of disputants, land managers, and caring onlookers
- Appreciate the value of traditional dispute-resolution strategies and methods while developing understanding of the benefits (and costs) of alternative means
UCC New Natural Resources Program Proposal

- Understand how to design simple, effective strategies and carry out basic environmental dispute resolution actions

**COURSE OUTLINE:**

**Week One:** Introduce course, get to know everyone a little, review syllabus and instructional materials, develop understanding of definitions and interpretations, review and discuss the Reed et al environmental values, and make initial selection of research project
  
  Exercise: “poker hand” win-lose versus win-win

**Week Two:** Review history of the environmentalism and the co-evolution of development in America, relate this history to the values we hear and experience today, and review and discuss our personal Meyers-Briggs and Thomas-Kilmann information
  
  Exercises: “walking caucus” on fear/conflict responses—fight, flight, hunker down, deceive, placate—followed by “blaming” role play and group feedback

**Week Three:** First hour, discuss environmental conflict with an experienced panel (advocacy interest, legal, political, and agency representatives); second hour, discuss observations from panel discussion in terms of understandings reached in weeks one and two as well as strategy and tactics insights gleaned from the panel representatives

**Week Four:** Evaluate and discuss various ways of identifying disputants and stakeholders; apply understanding from weeks one through three to developing ideas about who to approach for dispute resolution, some possible ways to go about it, and what resources might exist and be needed to make things happen

**Week Five:** First hour, midterm test; second hour, discuss third-party dispute resolution approaches with an experienced panel (facilitator, mediator, negotiator)

**Week Six:** Review and discuss conventional dispute resolution strategies--strengths and weaknesses; initial exploration of alternative strategies
  
  Exercise: “toxic waste” scenario

**Week Seven:** Further development of alternative strategies; introduction to basic techniques and methods with an emphasis on evaluating their strengths and weaknesses such as overall difficulty, time and dollar costs, and consistency with community values, among other factors

**Week Eight:** First hour, discuss community-based strategies with an experienced panel (established collaboratives); second hour, delve deeper into techniques such as mediation, facilitation, collaboration, and interest-based bargaining

**Week Nine:** First group of research project presentations

**Week Ten:** Second group of research project presentations; course review

Week Eleven: Final test
UCC New Course Approval

Basic Information
Name of New Course: Ecosystems of Southwest Oregon and Northern California
Contact: Ken Carloni
Contact Title: Dept. Chair
Department: Science
Supervisor: Jason Aase
Program: Natural Resources: Landscape Monitoring Option

New Course Information
Date, Year, and Term of Proposed Implementation: Spring Term 2016
Course Title: Ecosystems of Southwest Oregon and Northern California
Course Number: NR 242
Number of Credits: 4

Activity Code:
_X_100 - Lower Division Collegiate
_210 - CTE Preparatory
_211 - Stand-alone (Independent) CTE Preparatory
_220 - CTE Supplemental
_230 - CTE Apprenticeship
_310 - English as a Second Language
_320 - Adult Basic Education
_330 - General Education Development Test Preparation
_340 - Adult High School Diploma, High School Completion
_350 - Post-Secondary Remedial, Reading or Writing
_351 - Post-Secondary Remedial, Math
_352 - Post-Secondary Remedial, Electives
_360 - ACE – Unknown
_361 - ACE - Health and Fitness
_362 - ACE – Safety
_363 - ACE – Workforce
_510 - Non-Reimbursable – Unknown
_511 - Non-Reimbursable - Hobby and Recreation
_512 - Non-Reimbursable - Other/Administrative

Course Type
_Lecture (11 hrs/credit)
_Lab (30 hrs/credit)
_Lecture/Lab (20 hrs/credit)
_X_Other: 33 clock hrs. lecture; 33 clock hrs. lab
Number of Hours:
33 clock hrs. lecture; 33 clock hrs. lab
5.1 ILCs

Co- and Pre-Requisite Information
Previous course in Biology or Natural Resources recommended.

Co- and Pre-Requisite Enforcement
*Please choose an enforcement option for the information listed above.*

- Registration Enforced
- Instructor Enforced
- Combination or Other Enforcement

Catalog Course Description – *see attached course outline*
This is a hybrid course taught partly online and partly during a 6 day bus tour of Southern Oregon and Northwestern California. Resources for learning the distributions, unique species compositions, population interactions, nutrient and energy cycles, disturbance processes, and ecological histories of the landscapes of this region will be presented online. The bus tour begins immediately after the spring term ends, and will emphasize applications of this information during stops in the Siskiyou Mountains, Smith River, Redwood National Park, Trinidad State Beach, the Trinity River, Lassen Volcanic National Park, McArthur-Burney Falls State Park, Lava Beds National Monument, Crater Lake National Park, the North Umpqua River, and other sites of ecological interest. Students should be reasonably fit and prepared to hike several miles over the course of the tour on easy to moderately difficult trails.

Grading Option: A-F

Load Factor: 5.1 ILCs

Award Information:
*Please select all that apply.*

- AA
- X_AS
- AAS
- Below 100-Level
- Elective
- Certificate
- AAOT

*If you selected ‘AAOT’ above, please select the area of distribution below.*

- Arts and Letters
- Mathematics
- Science or Computer Science
- Social Science
__Speech/Oral Communication
__Writing
__Cultural Literacy

Required Course Information
Natural Resources: Landscape Monitoring Option

New Course Justification
Required for Natural Resources A.S.

Course Impacts (*Select all that apply*)

- Instructional costs (staff, materials, equipment, or facilities) are required.
- Additional instructional costs (staff, materials, equipment, or facilities) are needed.
- Impact to other divisions in terms of classes and staffing
- Other

Course Impact Description
Costs for this and other new courses in the NR program are largely covered by scaling back low-enrolled sections and increasing adjunct loads.

Additional Process Items

- Course Outline - required

COURSE OUTCOMES:

Students who successfully complete this course will be able to:

- Map the major ecoregions of SW Oregon and N California.
- Describe how climate, soils, and physiography influence the structure and function of ecological communities.
- Describe the region’s significant disturbance agents, explain the process of ecological succession, and recognize species commonly associated with pioneer and climax communities.
- Recognize forest, shrub, grassland and other community types of SW Oregon and N California based on their geographic location and species composition.
- Identify the dominant plant species found in each ecosystem we visit.
- Recognize the interrelationships between pattern and process in the ecosystems we visit.
COURSE OUTLINE:

- Use of dichotomous keys, reference resources
- Physical environment of the region
- Ecosystem pattern and process at multiple scales
- Disturbance processes, ecological succession, and Historic Range of Variability
- Dominant plant species of the region’s ecosystems
- Types and distributions of:
  - Conifer forests
  - Hardwood forests
  - Shrub and steppe communities
  - Grasslands and savannas
  - Wetland and riparian habitats
  - Coastal communities
- Field tour journal
- Final project
Basic Information

Name of New Course: Historical Ecology of Pacific Northwest Landscapes
Contact: Ken Carloni
Contact Title: Dept. Chair
Department: Science
Supervisor: Jason Aase
Program: Natural Resources: Landscape Monitoring Option

New Course Information

Date, Year, and Term of Proposed Implementation: Winter Term 2016
Course Title: Historical Ecology of Pacific Northwest Landscapes
Course Number: NR 243
Number of Credits: 3

Activity Code:
_X_100 - Lower Division Collegiate
__210 - CTE Preparatory
__211 - Stand-alone (Independent) CTE Preparatory
__220 - CTE Supplemental
__230 - CTE Apprenticeship
__310 - English as a Second Language
__320 - Adult Basic Education
__330 - General Education Development Test Preparation
__340 - Adult High School Diploma, High School Completion
__350 - Post-Secondary Remedial, Reading or Writing
__351 - Post-Secondary Remedial, Math
__352 - Post-Secondary Remedial, Electives
__360 - ACE – Unknown
__361 - ACE - Health and Fitness
__362 - ACE – Safety
__363 - ACE – Workforce
__510 - Non-Reimbursable – Unknown
__511 - Non-Reimbursable - Hobby and Recreation
__512 - Non-Reimbursable - Other/Administrative

Course Type
_X_ Lecture (11 hrs/credit)
__Lab (30 hrs/credit)
__Lecture/Lab (20 hrs/credit)
__Other:
Number of Hours:
33 clock hours/term

Co- and Pre-Requisite Information
Corequisite: WR 121

Co- and Pre-Requisite Enforcement
_X_Registration Enforced
__Instructor Enforced
__Combination or Other Enforcement

Catalog Course Description – see attached course outline
Students will learn about changes in the landscapes of the Pacific Northwest from the end of the last ice age to the present with an emphasis on Southwestern Oregon and Northern California. We will examine the changing uses of the environment by a succession of cultures, and their effects on landscape structure and function by using a range of tools to analyze archaeological, historical end ecological data to reconstruct historic landscapes.

Grading Option: A-F

Load Factor: 3 ILCs

Award Information:

__AA
_X_AS
__AAS
__Below 100-Level
__Elective
__Certificate
__AAOT

If you selected ‘AAOT’ above, please select the area of distribution below.
__Arts and Letters
__Mathematics
__Science or Computer Science
__Social Science
__Speech/Oral Communication
__Writing
__Cultural Literacy
Required Course Information
Natural Resources: Landscape Monitoring Option

New Course Justification
Required for A.S. in Natural Resources

Course Impacts (Select all that apply)

_ X _ Instructional costs (staff, materials, equipment, or facilities) are required.
_ _ Additional instructional costs (staff, materials, equipment, or facilities) are needed.
_ _ Impact to other divisions in terms of classes and staffing
_ _ Other

Course Impact Description
For any of the course impacts listed above, please describe.

Replacement Course For:
n/a

Additional Process Items

_ X _ Course Outline - required

COURSE OUTCOMES

Upon completion of the course, you will be able to:

- Trace the major events in the ecological and cultural history of the Pacific Northwest from the late Pleistocene to the present.
- Describe the methods and data used to reconstruct historic landscape conditions.
- Use historical, archaeological and ecological data to research and reconstruct historic landscape conditions.
- Apply the concept of Historic Range of Variability to landscapes through time.
- Analyze the impacts of the succession of cultures on landscape structure and function in SW Oregon and N California.
COURSE OUTLINE

• Introduction to the Theory and Practice of Historical Ecology
• Historic Range of Variability
• Life After the Ice Age and the Peopling of the Americas
• Cultural Evidence I: Archaeology and Ethnobiology
• Cultural Evidence II: Historic Documents, Images and Data.
• Ecological Evidence I: Dendrochronology and Vegetation Structure
• Ecological Evidence I: Pollen, Phytoliths and Geomorphology
• The Little River Watershed: Indians, Fire and the Land
• Natural Resource Conservation: Fatesheds and Management Options
Basic Information
Name of New Course: Landscape Monitoring: Fall/Winter/Spring
Contact: Ken Carloni
Contact Title: Dept. Chair
Department: Science
Supervisor: Jason Aase
Program: Natural Resources: Landscape Monitoring Option

New Course Information
Date, Year, and Term of Proposed Implementation: Fall 2016
Course Title: Landscape Monitoring: Fall/Winter/Spring
Course Number: NR 255A, NR 255B, NR 255C
Number of Credits: 2
Activity Code:
_ X_100 - Lower Division Collegiate
_ 210 - CTE Preparatory
_ 211 - Stand-alone (Independent) CTE Preparatory
_ 220 - CTE Supplemental
_ 230 - CTE Apprenticeship
_ 310 - English as a Second Language
_ 320 - Adult Basic Education
_ 330 - General Education Development Test Preparation
_ 340 - Adult High School Diploma, High School Completion
_ 350 - Post-Secondary Remedial, Reading or Writing
_ 351 - Post-Secondary Remedial, Math
_ 352 - Post-Secondary Remedial, Electives
_ 360 - ACE – Unknown
_ 361 - ACE - Health and Fitness
_ 362 - ACE – Safety
_ 363 - ACE – Workforce
_ 510 - Non-Reimbursable – Unknown
_ 511 - Non-Reimbursable - Hobby and Recreation
_ 512 - Non-Reimbursable - Other/Administrative

Course Type
_ X_ Lecture (11 hrs/credit)
_ X_ Lab (30 hrs/credit)
_ Lecture/Lab (20 hrs/credit)
_ Other:
Number of Hours:
1 hr. lecture, 3 hrs. lab per week; 44 clock hours per term

Co- and Pre-Requisite Information
Pre-or Corequisite: NR 251, PE 255

Co- and Pre-Requisite Enforcement
Please choose an enforcement option for the information listed above.
_X_ Registration Enforced
__ Instructor Enforced
__ Combination or Other Enforcement

Catalog Course Description – see attached course outline

The NR 255 series of courses emphasize sampling design and methods for quantifying physical, aquatic, and terrestrial resources in the Pacific Northwest with geographic emphasis on southwestern Oregon and northern California. Students will learn and apply standard field and laboratory protocols used by the US Forest Service, the Bureau of Land Management, the Oregon Dept. of Fish and Wildlife, the Oregon Department of Environmental Quality, and other state and national land and resource management agencies. NR 255A is offered Fall term, and will focus on resources typically monitored from late September to early December. NR 255B focuses on resources typically monitored during the Winter term from early January through late March, and NR 255C is offered Spring term with emphasis on monitoring protocols typically conducted from early April through early June.

Grading Option: A-F

Load Factor: 3.1 ILCs

Award Information:

__AA
_X_AS
__AAS
__Below 100-Level
__Elective
__Certificate
__AAOT

If you selected ‘AAOT’ above, please select the area of distribution below.

__Arts and Letters
__Mathematics
__Science or Computer Science
__Social Science
__Speech/Oral Communication
__Writing
__Cultural Literacy
**Required Course Information**
Required for Associate of Science in Natural Resources, Landscape Monitoring option

**New Course Justification**
Integral part of Natural Resources AS degree.

**Course Impacts (Select all that apply)**
- [X] Instructional costs (staff, materials, equipment, or facilities) are required.
- [ ] Additional instructional costs (staff, materials, equipment, or facilities) are needed.
- [ ] Impact to other divisions in terms of classes and staffing
- [ ] Other

**Course Impact Description**
These courses will be taught by current full- and part-time Science Dept. faculty requiring no new faculty and minimal increase in department personnel budget due to decreasing enrollments in other classes.

**Replacement Course For:**
n/a

**Additional Process Items**
- [X] Course Outline - (below)
- [ ] Start-Up Budget (if needed)
- [ ] Advisory Committee Minutes (if needed)

**COURSE OUTCOMES:**

Upon successful completion of NR 255A, NR 255B, or NR 255C students will be able to:

- Describe how monitoring programs are used to address research questions and management issues in population, habitat and ecosystem management; restoration ecology; and sustainable resource management.
- Explain concepts of systematic field sampling and data collection.
- Use common monitoring tools and techniques, and know the circumstances under which they are most effectively applied.
- Collect data in a systematic manner employing a variety of standard sampling protocols used by local and regional agency professionals.
- Demonstrate proficiency in basic data handling, interpretation, display, and communication technologies using a variety of presentation media.
COURSE OUTLINE

- Introduction to landscape monitoring.
- Monitoring program design and implementation.
- Endangered, threatened and other categories of species of concern in the PNW.
- Data analysis and presentation
- Use of equipment and protocols for measuring ecological parameters that may include (but are not limited to):
  - Water quality including pH, temperature, dissolved oxygen, conductivity, turbidity, and flow rate.
  - Stream function including macroinvertebrate diversity, spawning substrate and vertebrate species surveys.
  - Snag and down wood inventories.
  - Small mammal/prey-base monitoring.
  - Vegetation surveys.
  - Aquatic and terrestrial mollusk surveys.
  - Snorkeling for salmonids, amphibians and other aquatic species
  - Owl, murrelet, and neotropical bird surveys
  - Tree climbing for red tree vole, lichens, and other Survey and Manage species under the Northwest Forest Plan.
  - Trail cameras and radio telemetry.
  - Invasive species presence/absence.
Basic Information
Name of New Course: Principles of Fish and Wildlife Conservation
Contact: Ken Carloni
Contact Title: Dept. Chair
Department: Science
Supervisor: Jason Aase
Program: Natural Resources: Landscape Monitoring Option

New Course Information
Date, Year, and Term of Proposed Implementation: Winter Term 2016
Course Title: Principles of Fish and Wildlife Conservation
Course Number: NR 251
Number of Credits: 3
Activity Code:
  _X_100 - Lower Division Collegiate
  _210 - CTE Preparatory
  _211 - Stand-alone (Independent) CTE Preparatory
  _220 - CTE Supplemental
  _230 - CTE Apprenticeship
  _310 - English as a Second Language
  _320 - Adult Basic Education
  _330 - General Education Development Test Preparation
  _340 - Adult High School Diploma, High School Completion
  _350 - Post-Secondary Remedial, Reading or Writing
  _351 - Post-Secondary Remedial, Math
  _352 - Post-Secondary Remedial, Electives
  _360 - ACE – Unknown
  _361 - ACE - Health and Fitness
  _362 - ACE – Safety
  _363 - ACE – Workforce
  _510 - Non-Reimbursable – Unknown
  _511 - Non-Reimbursable - Hobby and Recreation
  _512 - Non-Reimbursable - Other/Administrative

Course Type
  _X_ Lecture (11 hrs/credit)
  _Lab (30 hrs/credit)
  _Lecture/Lab (20 hrs/credit)
  _Other:

Number of Hours:
33 clock hours/term

**Co- and Pre-Requisite Information**
A previous course in Biology or Natural Resources recommended.

**Co- and Pre-Requisite Enforcement**
*Please choose an enforcement option for the information listed above.*
- [ ] Registration Enforced
- [ ] Instructor Enforced
- [ ] Combination or Other Enforcement

**Catalog Course Description – see attached course outline**
History of conservation and natural resource use; ecological principles, and social and economic limitations of conservation; principles and practices of wildlife and fisheries management; role of research in management.

**Grading Option:** A-F

**Load Factor:** 3 ILCs

**Award Information:**
*Please select all that apply.*
- [ ] AA
- [x] AS
- [ ] AAS
- [ ] Below 100-Level
- [ ] Elective
- [ ] Certificate
- [ ] AAOT

*If you selected ‘AAOT’ above, please select the area of distribution below.*
- [ ] Arts and Letters
- [ ] Mathematics
- [ ] Science or Computer Science
- [ ] Social Science
- [ ] Speech/Oral Communication
- [ ] Writing
- [ ] Cultural Literacy
Required Course Information
Natural Resources: Landscape Monitoring Option

New Course Justification
Required for A.S. in Natural Resources

Course Impacts (Select all that apply)

_X_ Instructional costs (staff, materials, equipment, or facilities) are required.
__Additional instructional costs (staff, materials, equipment, or facilities) are needed.
__Impact to other divisions in terms of classes and staffing
__Other

Course Impact Description
For any of the course impacts listed above, please describe.

Replacement Course For:
n/a

Additional Process Items

_X_ Course Outline - required
__ Start-Up Budget (if needed)
__ Advisory Committee Minutes (if needed)

COURSE OUTCOMES
Upon completion of the course, you will be able to:

- Describe the basic scientific principles underlying the management and conservation of fish and wildlife.
- Outline the legal, social, cultural, and political institutions that affect wildlife conservation and management.
- Explain how scientific knowledge and research are used in the conservation and management of our natural resources.
- Develop and apply a vocabulary related to wildlife and fish ecology.
COURSE OUTLINE

I. Social and political aspects of wildlife conservation and management
   - History of fisheries and wildlife conservation in US
   - Human Attitudes – Values & Philosophy
   - Economics of Wildlife and Fish Conservation
   - Overabundant Wildlife

II. Scientific principles of wildlife management
   - Ecological Principles
   - Evolutionary Biology
   - Population Dynamics
   - Endangered Species
   - Conservation Biology
   - Exotic Species
   - Disease Ecology

III. Scientific principles of ecosystem management
   - Principles of Fish and Wildlife Harvest Management
   - Ecosystem Management
   - Landscape Ecology
   - Marine Systems
   - Agricultural Ecosystems
Basic Information
Name of New Course: Landscape Monitoring: Fall/Winter/Spring
Contact: Ken Carloni
Contact Title: Dept. Chair
Department: Science
Supervisor: Jason Aase
Program: Natural Resources: Landscape Monitoring Option

New Course Information
Date, Year, and Term of Proposed Implementation: Fall 2016
Course Title: Landscape Monitoring Methods
Course Number: NR 255A, NR 255B, NR 255C
Number of Credits: 2
Activity Code:
_X_100 - Lower Division Collegiate
__210 - CTE Preparatory
__211 - Stand-alone (Independent) CTE Preparatory
__220 - CTE Supplemental
__230 - CTE Apprenticeship
__310 - English as a Second Language
__320 - Adult Basic Education
__330 - General Education Development Test Preparation
__340 - Adult High School Diploma, High School Completion
__350 - Post-Secondary Remedial, Reading or Writing
__351 - Post-Secondary Remedial, Math
__352 - Post-Secondary Remedial, Electives
__360 - ACE – Unknown
__361 - ACE - Health and Fitness
__362 - ACE – Safety
__363 - ACE – Workforce
__510 - Non-Reimbursable – Unknown
__511 - Non-Reimbursable - Hobby and Recreation
__512 - Non-Reimbursable - Other/Administrative

Course Type
_X_Lecture (11 hrs/credit)
_X_Lab (30 hrs/credit)
__Lecture/Lab (20 hrs/credit)
__Other:
Number of Hours:
1 hr. lecture, 3 hrs. lab per week; 44 clock hours per term

Co- and Pre-Requisite Information
Pre-or Corequisite: NR 251, PE 255
NR 255A/B/C can be taken in any order.

Co- and Pre-Requisite Enforcement
Please choose an enforcement option for the information listed above.
_X_Registration Enforced
__Instructor Enforced
__Combination or Other Enforcement

Catalog Course Description – see attached course outline

The NR 255 series of courses emphasize sampling design and methods for quantifying physical, aquatic, and terrestrial resources in the Pacific Northwest with geographic emphasis on southwestern Oregon and northern California. Students will learn and apply standard field and laboratory protocols used by the US Forest Service, the Bureau of Land Management, the Oregon Dept. of Fish and Wildlife, the Oregon Department of Environmental Quality, and other state and national land and resource management agencies. NR 255A is offered Fall term, and will focus on resources typically monitored from late September to early December. NR 255B focuses on resources typically monitored during the Winter term from early January through late March, and NR 255C is offered Spring term with emphasis on monitoring protocols typically conducted from early April through early June.

Grading Option: A-F

Load Factor: 3.1 ILCs

Award Information:
__AA
_X_AS
__AAS
__Below 100-Level
__Elective
__Certificate
__AAOT

If you selected ‘AAOT’ above, please select the area of distribution below.
__Arts and Letters
__Mathematics
__Science or Computer Science
__Social Science
__Speech/Oral Communication
__Writing
__Cultural Literacy
Required Course Information
Required for Associate of Science in Natural Resources, Landscape Monitoring option

New Course Justification
Integral part of Natural Resources AS degree.

Course Impacts (Select all that apply)

_X_ Instructional costs (staff, materials, equipment, or facilities) are required.
__Additional instructional costs (staff, materials, equipment, or facilities) are needed.
__Impact to other divisions in terms of classes and staffing
__Other

Course Impact Description
These courses will be taught by current full- and part-time Science Dept. faculty requiring no new faculty and minimal increase in department personnel budget due to decreasing enrollments in other classes.

Replacement Course For:

n/a

Additional Process Items

_X_ Course Outline - (below)
__Start-Up Budget (if needed)
__Advisory Committee Minutes (if needed)

COURSE OUTCOMES:

Upon successful completion of NR 255A, NR 255B, or NR 255C students will be able to:

- Describe how monitoring programs are used to address research questions and management issues in population, habitat and ecosystem management; restoration ecology; and sustainable resource management.
- Explain concepts of systematic field sampling and data collection.
- Use common monitoring tools and techniques, and know the circumstances under which they are most effectively applied.
- Collect data in a systematic manner employing a variety of standard sampling protocols used by local and regional agency professionals.
- Demonstrate proficiency in basic data handling, interpretation, display, and communication technologies using a variety of presentation media.
COURSE OUTLINE

- Introduction to landscape monitoring.
- Monitoring program design and implementation.
- Endangered, threatened and other categories of species of concern in the PNW.
- Data analysis and presentation
- Use of equipment and protocols for measuring ecological parameters that may include (but are not limited to):
  - Water quality including pH, temperature, dissolved oxygen, conductivity, turbidity, and flow rate.
  - Stream function including macroinvertebrate diversity, spawning substrate and vertebrate species surveys.
  - Snag and down wood inventories.
  - Small mammal/prey-base monitoring.
  - Vegetation surveys.
  - Aquatic and terrestrial mollusk surveys.
  - Snorkeling for salmonids, amphibians and other aquatic species
  - Owl, murrelet, and neotropical bird surveys
  - Tree climbing for red tree vole, lichens, and other Survey and Manage species under the Northwest Forest Plan.
  - Trail cameras and radio telemetry.
  - Invasive species presence/absence.
Basic Information

Name of Course Revision Contact: Jillanne Michell
Date: April 6, 2015
Contact Title: Chair of Humanities
Department: Humanities
Course Number: ENG 201
Course Title: Shakespeare

Course Revision Information

Type of change

_X_ Revision
__ Reactivation
__ Deletion

Date, Year, and Term of Proposed Revision: Fall 2015

Parent Program: English

Course Revision Description and Justification

Please give as many details as possible about the revision, including justification for the change.
The English department would like to revise the three-term Shakespeare sequence (ENG 201, 202, and 203) into a two-term sequence (ENG 201 and 202). The courses of the previous three-term sequence were developed as three-credit courses, and with the move to four-credit courses, it makes sense to consolidate the courses. The three-course sequence was organized chronologically: 201 with early works, 202 with middle works, and 203 with later works. The two-course sequence can maintain this chronological organization: 201 with early to middle works and 202 with middle to later works. Many other institutions, including the University of Oregon, offer Shakespeare in two courses, rather than three. This will free up an instructor for a term to teach a different literature course, increasing the variety of our offerings.

Course Revision Impacts - select all that apply

__ Instructional costs (staff, materials, equipment, or facilities) required.
__ Additional instructional costs (staff, materials, equipment, or facilities) are needed.
__ Impact to other divisions in terms of classes and staffing
__ Other:

Description of Impact

If your revision will have one of the impacts listed above, please describe...
List current information and proposed changes

<table>
<thead>
<tr>
<th>CURRENT</th>
<th>PROPOSED</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Course number</strong></td>
<td><strong>Course number</strong></td>
</tr>
<tr>
<td>ENG 201</td>
<td>ENG 201</td>
</tr>
<tr>
<td><strong>Course title</strong></td>
<td><strong>Course title</strong></td>
</tr>
<tr>
<td>Shakespeare</td>
<td>Shakespeare</td>
</tr>
<tr>
<td><strong>Credits</strong></td>
<td><strong>Credits</strong></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td><strong>Lecture Hrs/Wk</strong></td>
<td><strong>Lecture Hrs/Wk</strong></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td><strong>Lec/Lab Hrs/Wk</strong></td>
<td><strong>Lec/Lab Hrs/Wk</strong></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>Lab/Hrs/Wk</strong></td>
<td><strong>Lab/Hrs/Wk</strong></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>Practicum</strong></td>
<td><strong>Practicum</strong></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>Banner/Instr. Prerequisites</strong></td>
<td><strong>Banner/Instr. Prerequisites</strong></td>
</tr>
<tr>
<td>Instructor Recommended Prerequisite</td>
<td>Instructor Recommended Prerequisite</td>
</tr>
<tr>
<td><strong>Co-requisites</strong></td>
<td><strong>Co-requisites</strong></td>
</tr>
<tr>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td><strong>Length (Weeks)</strong></td>
<td><strong>Length (Weeks)</strong></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td><strong>Terms Offered</strong></td>
<td><strong>Terms Offered</strong></td>
</tr>
<tr>
<td>Fall, Summer</td>
<td>Fall, Summer</td>
</tr>
<tr>
<td><strong>Grading Option</strong></td>
<td><strong>Grading Option</strong></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Load Factor</strong></td>
<td><strong>Load Factor</strong></td>
</tr>
<tr>
<td>4.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Additional Documentation
Please check additional forms or documentation you have submitted to Curriculum Committee.
_x_ Course Outline - required
__ Other:
Course No: ENG 201
Course Credit: 4
Lecture Hrs/wk: 4
Lab Hrs/Wk: 0
Lecture/Lab Hrs/Wk: 0
Practicum Hrs/Wk: 0
Clock Hours: 44
Length of Course: 11 weeks
Banner enforced Prerequisite: none
Instructor Recommended Prerequisite: WR 095 with a minimum grade of C or appropriate placement test score, AND RD 090 with a minimum grade of C or appropriate placement test score
Co-Requisite: none
Load Factor: 4.0
Activity Code: 100 Lower Division Collegiate
CIPS: 239900

Course Title: Shakespeare
Developed By: Dr. Jillanne Michell
Development Date: Unknown
Revision Date: April 2015
Review Date:

COURSE DESCRIPTION: The Shakespeare sequence (ENG 201 and 202) provides an introduction to Shakespeare's dramatic work and poetry. It proceeds chronologically: ENG 201 focuses on selected comedies, tragedies, histories, and poems from Shakespeare's early to middle career; ENG 202 focuses on selected comedies, tragedies, romances, and poems from Shakespeare's middle to late career. Students will learn to interpret Shakespeare's work using a variety of critical strategies, including literary, historical, sociological, psychological, and philosophical approaches. They will study Shakespeare's language and poetry, including a focus on vocabulary, figurative language, and allusions. Topics include early modern ideas and attitudes about gender, sexuality, class, and identity; Shakespeare's influences and sources, both classical and contemporary; historical and contemporary conventions of drama; changing perceptions of Shakespeare through history; Elizabethan and Jacobean politics in City and Court; Shakespeare's subversion and/or support of cultural norms; and Shakespeare's representation of women and other marginalized groups.

COURSE OUTCOMES: Upon successful completion of this course, students will be able to
1. Identify and describe selected works from Shakespeare's early to mid-career comedies, tragedies, histories, and poems, including the ability to distinguish plots, character types, themes, and generic conventions.
2. Recognize distinctive features of Shakespeare's language, both prose and poetry--especially his use of metaphors, similes, and allusions--and accurately interpret that language.
3. Analyze and understand the cultural, historical, social, psychological, and aesthetic significance of Shakespeare's texts.
4. Analyze and interpret Shakespeare’s works, demonstrating critical reading, thinking, writing, and communication skills, including the ability to support interpretations with textual evidence.

5. Access and evaluate both traditional and electronic sources to research information and locate professional literary criticism, and employ the MLA system of documentation, including proper format and attribution of sources in written work.
Basic Information
Name of Course Revision Contact: Jillanne Michell
Date: April 6, 2015
Contact Title: Chair of Humanities
Department: Humanities
Course Number: ENG 202
Course Title: Shakespeare

Course Revision Information

Type of change
_X_ Revision
__ Reactivation
__ Deletion

Date, Year, and Term of Proposed Revision: Fall 2015

Parent Program: English

Course Revision Description and Justification
Please give as many details as possible about the revision, including justification for the change.
The English department would like to revise the three-term Shakespeare sequence (ENG 201, 202, and 203) into a two-term sequence (ENG 201 and 202). The courses of the previous three-term sequence were developed as three-credit courses, and with the move to four-credit courses, it makes sense to consolidate the courses. The three-course sequence was organized chronologically: 201 with early works, 202 with middle works, and 203 with later works. The two-course sequence can maintain this chronological organization: 201 with early to middle works and 202 with middle to later works. Many other institutions, including the University of Oregon, offer Shakespeare in two courses, rather than three. This will free up an instructor for a term to teach a different literature course, increasing the variety of our offerings.

Course Revision Impacts - select all that apply

__ Instructional costs (staff, materials, equipment, or facilities) required.
__ Additional instructional costs (staff, materials, equipment, or facilities) are needed.
__ Impact to other divisions in terms of classes and staffing
__ Other:

Description of Impact
If your revision will have one of the impacts listed above, please describe...
### List current information and proposed changes

<table>
<thead>
<tr>
<th></th>
<th><strong>CURRENT</strong></th>
<th><strong>PROPOSED</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Course number</strong></td>
<td>ENG 202</td>
<td>ENG 202</td>
</tr>
<tr>
<td><strong>Course title</strong></td>
<td>Shakespeare</td>
<td>Shakespeare</td>
</tr>
<tr>
<td><strong>Credits</strong></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td><strong>Lecture Hrs/Wk</strong></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td><strong>Lec/Lab Hrs/Wk</strong></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>Lab/Hrs/Wk</strong></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>Practicum</strong></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>Banner/Instr. Prerequisites</strong></td>
<td>Instructor</td>
<td>Instructor</td>
</tr>
<tr>
<td></td>
<td>Recommended</td>
<td>Recommended</td>
</tr>
<tr>
<td><strong>Co-requisites</strong></td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td><strong>Length (Weeks)</strong></td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td><strong>Terms Offered</strong></td>
<td>Winter, Summer</td>
<td>Winter, Summer</td>
</tr>
<tr>
<td><strong>Grading Option</strong></td>
<td></td>
<td>Grading Option</td>
</tr>
<tr>
<td><strong>Load Factor</strong></td>
<td>4.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

**Additional Documentation**

*Please check additional forms or documentation you have submitted to Curriculum Committee.*

_x_ Course Outline - required

__ Other:
Course Title: Shakespeare  
Developed By: Dr. Jillanne Michell  
Development Date: Unknown  
Revision Date: April 2015  
Review Date:

**COURSE DESCRIPTION:** The Shakespeare sequence (ENG 201 and 202) provides an introduction to Shakespeare's dramatic work and poetry. It proceeds chronologically: ENG 201 focuses on selected comedies, tragedies, histories, and poems from Shakespeare's early to middle career; ENG 202 focuses on selected comedies, tragedies, romances, and poems from Shakespeare's middle to late career. Students will learn to interpret Shakespeare’s work using a variety of critical strategies, including literary, historical, sociological, psychological, and philosophical approaches. They will study Shakespeare’s language and poetry, including a focus on vocabulary, figurative language, and allusions. Topics include early modern ideas and attitudes about gender, sexuality, class, and identity; Shakespeare’s influences and sources, both classical and contemporary; historical and contemporary conventions of drama; changing perceptions of Shakespeare through history; Elizabethan and Jacobean politics in City and Court; Shakespeare’s subversion and/or support of cultural norms; and Shakespeare’s representation of women and other marginalized groups.

**COURSE OUTCOMES:** Upon successful completion of this course, students will be able to
1. Identify and describe selected works from Shakespeare’s middle to late-career comedies, tragedies, and romances, including with the ability to distinguish plots, character types, themes, and generic conventions.
2. Recognize distinctive features of Shakespeare’s language, both prose and poetry--especially his use of metaphors, similes, and allusions--and accurately interpret that language.
3. Analyze and understand the cultural, historical, social, psychological, and aesthetic significance of Shakespeare’s texts.
4. Analyze and interpret Shakespeare’s works, demonstrating critical reading, thinking, writing, and communication skills, including the ability to support interpretations with textual evidence.
5. Access and evaluate both traditional and electronic sources to research information and locate professional literary criticism, and employ the MLA system of documentation, including proper format and attribution of sources in written work.
Basic Information
Name of Course Revision Contact: Jillanne Michell
Date: April 6, 2015
Contact Title: Chair of Humanities
Department: Humanities
Course Number: ENG 203
Course Title: Shakespeare

Course Revision Information

Type of change
__ Revision
__ Reactivation
_ X _ Deletion

Date, Year, and Term of Proposed Revision: Fall 2015

Parent Program: English

Course Revision Description and Justification
Please give as many details as possible about the revision, including justification for the change.

The English department would like to revise the three-term Shakespeare sequence (ENG 201, 202, and 203) into a two-term sequence (ENG 201 and 202). The courses of the previous three-term sequence were developed as three-credit courses, and with the move to four-credit courses, it makes sense to consolidate the courses. The three-course sequence was organized chronologically: 201 with early works, 202 with middle works, and 203 with later works. The two-course sequence can maintain this chronological organization: 201 with early to middle works and 202 with middle to later works. Many other institutions, including the University of Oregon, offer Shakespeare in two courses, rather than three. This will free up an instructor for a term to teach a different literature course, increasing the variety of our offerings.

Course Revision Impacts - select all that apply

__ Instructional costs (staff, materials, equipment, or facilities) required.
__ Additional instructional costs (staff, materials, equipment, or facilities) are needed.
__ Impact to other divisions in terms of classes and staffing
__ Other:

Description of Impact
If your revision will have one of the impacts listed above, please describe...
**List current information and proposed changes**

<table>
<thead>
<tr>
<th></th>
<th>CURRENT</th>
<th>PROPOSED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course number</td>
<td>ENG 203</td>
<td>Course number</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENG 203</td>
</tr>
<tr>
<td>Course title</td>
<td>Shakespeare</td>
<td>Course title</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shakespeare</td>
</tr>
<tr>
<td>Credits</td>
<td>4</td>
<td>Credits</td>
</tr>
<tr>
<td>Lecture Hrs/Wk</td>
<td>4</td>
<td>Lecture Hrs/Wk</td>
</tr>
<tr>
<td>Lec/Lab Hrs/Wk</td>
<td>0</td>
<td>Lec/Lab Hrs/Wk</td>
</tr>
<tr>
<td>Lab/Hrs/Wk</td>
<td>0</td>
<td>Lab/Hrs/Wk</td>
</tr>
<tr>
<td>Practicum</td>
<td>0</td>
<td>Practicum</td>
</tr>
<tr>
<td>Banner/Instr.</td>
<td>Instructor</td>
<td>Banner/Instr.</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Recomomended</td>
<td>Prerequisites</td>
</tr>
<tr>
<td></td>
<td>Prerequisite</td>
<td></td>
</tr>
<tr>
<td>Co-requisites</td>
<td>none</td>
<td>Co-requisites</td>
</tr>
<tr>
<td>Length (Weeks)</td>
<td>11</td>
<td>Length (Weeks)</td>
</tr>
<tr>
<td>Terms Offered</td>
<td>Spring</td>
<td>Terms Offered</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Grading Option</td>
<td></td>
<td>Grading Option</td>
</tr>
<tr>
<td>Load Factor</td>
<td>4.0</td>
<td>Load Factor</td>
</tr>
</tbody>
</table>

**Additional Documentation**

Please check additional forms or documentation you have submitted to Curriculum Committee.
- Course Outline - required
- Other:
**Basic Information**  
Name of Course Revision Contact: Ken Carloni  
Date: Feb. 2015  
Contact Title: Dept. Chair  
Department: Science  
Course Number: BI 211  
Course Title: Principles of Biology

**Course Revision Information**

**Type of change**  
_X_ Revision  
__ Reactivation  
__ Deletion

**Date, Year, and Term of Proposed Revision:** Fall 2015

**Parent Program:** Science

**Course Revision Description and Justification**

This revision 1) changes the pre-/corequisite for this course to include CH 112, and 2) updates the course outcomes to more accurately reflect what is currently being taught.

**Course Revision Impacts - select all that apply**

__ Instructional costs (staff, materials, equipment, or facilities) required.  
__ Additional instructional costs (staff, materials, equipment, or facilities) are needed.  
__ Impact to other divisions in terms of classes and staffing  
__ Other:

**Description of Impact**

This may increase enrollment in CH 112 slightly while causing a slight corresponding decline in CH 104 or 221. It will therefore have little impact on overall enrollments in the Science Dept.
Course Title: Principles of Biology
Developed By: Ken Carloni
Development Date: Sept. 1991
Revision Date: Nov. 2004; Feb. 2015
Review Date:

COURSE DESCRIPTION:
Chemistry of life; origin and history of life; population genetics and natural selection; diversity of prokaryotes and eukaryotes; ecology of biomes, communities and populations; conservation biology.

COURSE OUTCOMES:
Upon successful completion of BI 211, students will be able to:

- demonstrate a basic understanding of the evolution of biological systems, the origins and diversity of living organisms, the flow of energy and the cycling of nutrients through ecosystems, the effects of positive and negative feedback on living systems, and the forces that generate biodiversity and maintain stability in ecosystems.
- demonstrate proficiency with laboratory equipment and procedures for gathering data.
- construct a hypothesis, and apply the methods necessary to gather and analyze data to test that hypothesis.
- demonstrate proficiency in the use of word processing, spreadsheet and presentation software to record, analyze and communicate the results of their investigations.
- use standard scientific report writing format including internal citations for documenting literature used in writing assignments and labs.
- solve problems as individuals and in groups.
- evaluate the impacts of biology on society.
Course Outline

I. Origin and History of Life
   A. Chemistry of life
   B. Chemical and Biological Evolution
   C. History of Life

II. Evolution of Diversity
   A. Domains and Kingdoms
   B. Prokaryotes
   C. Protists
   D. Fungi
   E. Plants
   F. Animals

III. Ecology
   A. Ecological systems from populations to the biosphere
   B. Conservation biology
**Basic Information**

Name of Course Revision Contact: Ken Carloni  
Date: Feb. 2015  
Contact Title: Dept. Chair  
Department: Science  
Course Number: CH 112  
Course Title: Fundamentals of Chemistry (title change from Chemistry for Health Occupations)

**Course Revision Information**

**Type of change**  
_X_ Revision  
__ Reactivation  
__ Deletion

Date, Year, and Term of Proposed Revision: Fall 2015

Parent Program: Science

**Course Revision Description and Justification**

This revision 1) changes the name to apply to a broader range of programs and majors including natural Resources majors, and 2) updates the course outcomes to more accurately reflect what is currently being taught.

New course catalog description: This is a one-term entry level chemistry course designed for individuals not previously exposed to chemistry. Basic knowledge and skills are developed in Inorganic, Organic, and Biochemistry for general application in a wide range of professions.

**Course Revision Impacts - select all that apply**

__ Instructional costs (staff, materials, equipment, or facilities) required.  
__ Additional instructional costs (staff, materials, equipment, or facilities) are needed.  
__ Impact to other divisions in terms of classes and staffing  
__ Other:

Description of Impact  
This will increase enrollment in CH 112 and will offset shrinking enrollment. It will therefore have little impact on the status quo.
Course Title: Fundamentals of Chemistry
Developed By: Dale Champion and others
Development Date: 2006
Revision Date: Feb. 2015
Review Date:

COURSE DESCRIPTION:

This is a one-term entry level chemistry course designed for individuals not previously exposed to chemistry. Basic knowledge and skills are developed in Inorganic, Organic, and Biochemistry for general application in a wide range of professions.

COURSE OUTCOMES:

Upon completion of this course, students will be able to:

1. Demonstrate a basic knowledge of core content including the theory, principles, and applications of atomic structure, periodic law, stoichiometry, nomenclature, states and classification of matter, mole relationships, chemical bonding, reaction rates, radioactivity, organic and biological molecules.
2. Describe how models are used to help our understanding of atomic structure.
3. Explain how radiation, half-life, and transmutation pertain to isotopes.
4. Use Kinetic-molecular theory to explain the different states of matter and their properties.
5. Understand how the Periodic Chart is organized in terms of repeating patterns of atomic structure that determine the properties of the various families of elements.
6. Explain how intermolecular interactions cause a wide variety of chemical phenomena.
7. Understand the basic principles involved in acid-base and redox chemistry.
8. Describe the structure and role of various organic compounds important to biochemistry.
10. Solve problems using the correct number of significant figures.
11. Write and balance chemical equations.
12. Use IUPAC nomenclature for ionic, covalent, acidic/basic compounds and organic compounds
13. Following standard lab safety protocols, perform basic laboratory techniques including accurate measurement of mass and volume using a variety of lab specific techniques and apparatus.
14. Demonstrate higher level thinking skills and effective communication in the subject areas of chemistry and biochemistry.

COURSE OUTLINE

- Matter, Atoms, Measurement and Significant Figures
- Electronic Structure & Periodic Law, Separation of Mixtures
- Forces & Chemical Reactions, Nomenclature
- States of Matter, Lewis Structures and Molecular Models
- Solutions & Reaction Rates, Energy Content of Foods
- Reaction Rates & Acid/Base/Salts, Chemical Reactions
- Radioactivity, Solutions
- Alkanes, Alkenes and Alkynes; Acid/Base Titration
- Carbohydrates & Proteins, Modelling Organic Molecules
- Lipids & Nucleic Acids
Basic Information

Name of New Course: Forest Ecosystems
Contact: Ken Carloni, Ph.D.
Contact Title: Dept. Chair
Department: Science
Supervisor: Jason Aase
Program: Natural Resources

New Course Information

Date, Year, and Term of Proposed Implementation: Winter 2016
Course Title: Forest Ecosystems
Course Number: NR 240
Number of Credits: 3

Activity Code:
_X_100 - Lower Division Collegiate
__210 - CTE Preparatory
__211 - Stand-alone (Independent) CTE Preparatory
__220 - CTE Supplemental
__230 - CTE Apprenticeship
__310 - English as a Second Language
__320 - Adult Basic Education
__330 - General Education Development Test Preparation
__340 - Adult High School Diploma, High School Completion
__350 - Post-Secondary Remedial, Reading or Writing
__351 - Post-Secondary Remedial, Math
__352 - Post-Secondary Remedial, Electives
__360 - ACE – Unknown
__361 - ACE - Health and Fitness
__362 - ACE – Safety
__363 - ACE – Workforce
__510 - Non-Reimbursable – Unknown
__511 - Non-Reimbursable - Hobby and Recreation
__512 - Non-Reimbursable - Other/Administrative

Course Type
_X_ Lecture (11 hrs/credit)
__Lab (30 hrs/credit)
__Lecture/Lab (20 hrs/credit)
__Other:

Number of Hours:
3 hrs. lecture/wk., 33 clock hours/term

Co- and Pre-Requisite Information
A prior class in Natural Resources or Biology or Instructor’s consent.

Co- and Pre-Requisite Enforcement
*Please choose an enforcement option for the information listed above.*

- [ ] Registration Enforced
- [ ] Instructor Enforced
- [ ] Combination or Other Enforcement

Catalog Course Description

Grading Option: A-F and audit

Load Factor: 3 ILCs

Award Information:

- [ ] AA
- [ ] AS
- [ ] AAS
- [ ] Below 100-Level
- [ ] Elective
- [ ] Certificate
- [ ] AAOT

*If you selected ‘AAOT’ above, please select the area of distribution below.*

- [ ] Arts and Letters
- [ ] Mathematics
- [ ] Science or Computer Science
- [ ] Social Science
- [ ] Speech/Oral Communication
- [ ] Writing
- [ ] Cultural Literacy

CTE and Lower Division Collegiate Proposals Only

Approved by Advisory Committee?
This course and all others in the Natural Resources AS program will be approved by the Natural Resources Dept. in the College of Forestry at Oregon State University for articulation with their program.

Required Course Information
Associate of Science in Natural Resources, Landscape Monitoring option
New Course Justification
Required for Natural Resources AS degree.

Course Impacts (*Select all that apply*)
- X_Instructional costs (staff, materials, equipment, or facilities) are required.
- __Additional instructional costs (staff, materials, equipment, or facilities) are needed.
- __Impact to other divisions in terms of classes and staffing
- __Other

Course Impact Description
This course will be taught by a full-time Instructor and will require 3 ILCs of pay beyond the Science Dept.’s current personnel costs. This will be offset by hiring an adjunct instructor to teach one class from the full-time instructor’s current load.

Replacement Course For: n/a

Additional Process Items
- X_Course Outline - (see also below)
- __Start-Up Budget (if needed)
- __Advisory Committee Minutes (if needed)

COURSE OUTCOMES:

Students who complete this course will be able to:
- Describe the components and processes of forest ecosystems at multiple scales.
- Explain the flow of energy and the cycling of nutrients in ecosystems, and discuss the factors that influence these processes.
- Explain the influence of climate, soils, topography, and disturbance agents on ecosystem structure and function.
- Explain the relationships between the processes of disturbance and forest succession, and discuss their effects on ecosystem structure and function including stand demographics, soils, water resources, wildlife habitat, carbon storage and biodiversity.
- Discriminate among those management practices that accumulate carbon, store water, produce sustainable products, and increase biodiversity from those that don’t.
- Recognize effective solutions to ecological problems and communicate them clearly.
COURSE OUTLINE:

- Fundamental Ecosystem Concepts
- Structure and Function of Forest Ecosystems at Multiple Scales
- Climate, Soils, Topography and Ecoregions
- Coevolution of Populations and Communities
- Disturbance and Succession in Forest Ecosystems
- Energy, Productivity and Biomass
- Biogeochemical Cycles
- Landscape Ecology: Fragmentation, Connectivity, and Landscape Heterogeneity
- Ecosystem Services
Basic Information

Name of New Course: Forest Ecosystems
Contact: Ken Carloni, Ph.D.
Contact Title: Dept. Chair
Department: Science
Supervisor: Jason Aase
Program: Natural Resources

New Course Information

Date, Year, and Term of Proposed Implementation: Winter 2016
Course Title: Forest Ecosystems
Course Number: NR 240
Number of Credits: 3
Activity Code:
_X_100 - Lower Division Collegiate
__210 - CTE Preparatory
__211 - Stand-alone (Independent) CTE Preparatory
__220 - CTE Supplemental
__230 - CTE Apprenticeship
__310 - English as a Second Language
__320 - Adult Basic Education
__330 - General Education Development Test Preparation
__340 - Adult High School Diploma, High School Completion
__350 - Post-Secondary Remedial, Reading or Writing
__351 - Post-Secondary Remedial, Math
__352 - Post-Secondary Remedial, Electives
__360 - ACE – Unknown
__361 - ACE - Health and Fitness
__362 - ACE – Safety
__363 - ACE – Workforce
__510 - Non-Reimbursable – Unknown
__511 - Non-Reimbursable - Hobby and Recreation
__512 - Non-Reimbursable - Other/Administrative

Course Type
_X_ Lecture (11 hrs/credit)
__Lab (30 hrs/credit)
__Lecture/Lab (20 hrs/credit)
__Other:

Number of Hours:
3 hrs. lecture/wk., 33 clock hours/term

**Co- and Pre-Requisite Information**
A prior class in Natural Resources or Biology or Instructor’s consent.

**Co- and Pre-Requisite Enforcement**
*Please choose an enforcement option for the information listed above.*

  - [X] Registration Enforced
  - [ ] Instructor Enforced
  - [ ] Combination or Other Enforcement

**Catalog Course Description**

**Grading Option:** A-F and audit

**Load Factor:** 3 ILCs

**Award Information:**

  - [ ] AA
  - [X] AS
  - [ ] AAS
  - [ ] Below 100-Level
  - [X] Elective
  - [ ] Certificate
  - [X] AAOT

*If you selected ‘AAOT’ above, please select the area of distribution below.*

  - [ ] Arts and Letters
  - [ ] Mathematics
  - [X] Science or Computer Science
  - [ ] Social Science
  - [ ] Speech/Oral Communication
  - [ ] Writing
  - [ ] Cultural Literacy

**CTE and Lower Division Collegiate Proposals Only**

**Approved by Advisory Committee?**
This course and all others in the Natural Resources AS program will be approved by the Natural Resources Dept. in the College of Forestry at Oregon State University for articulation with their program.

**Required Course Information**
Associate of Science in Natural Resources, Landscape Monitoring option
**New Course Justification**
Required for Natural Resources AS degree.

**Course Impacts (Select all that apply)**
- [X] Instructional costs (staff, materials, equipment, or facilities) are required.
- [ ] Additional instructional costs (staff, materials, equipment, or facilities) are needed.
- [ ] Impact to other divisions in terms of classes and staffing
- [ ] Other

**Course Impact Description**
This course will be taught by a full-time Instructor and will require 3 ILCs of pay beyond the Science Dept.’s current personnel costs. This will be offset by hiring an adjunct instructor to teach one class from the full-time instructor’s current load.

**Replacement Course For:** n/a

**Additional Process Items**
- [X] Course Outline - (see also below)
- [ ] Start-Up Budget (if needed)
- [ ] Advisory Committee Minutes (if needed)

**COURSE OUTCOMES:**
Students who complete this course will be able to:
- Describe the components and processes of forest ecosystems at multiple scales.
- Explain the flow of energy and the cycling of nutrients in ecosystems, and discuss the factors that influence these processes.
- Explain the influence of climate, soils, topography, and disturbance agents on ecosystem structure and function.
- Explain the relationships between the processes of disturbance and forest succession, and discuss their effects on ecosystem structure and function including stand demographics, soils, water resources, wildlife habitat, carbon storage and biodiversity.
- Discriminate among those management practices that accumulate carbon, store water, produce sustainable products, and increase biodiversity from those that don’t.
- Recognize effective solutions to ecological problems and communicate them clearly.
COURSE OUTLINE:

- Fundamental Ecosystem Concepts
- Structure and Function of Forest Ecosystems at Multiple Scales
- Climate, Soils, Topography and Ecoregions
- Coevolution of Populations and Communities
- Disturbance and Succession in Forest Ecosystems
- Energy, Productivity and Biomass
- Biogeochemical Cycles
- Landscape Ecology: Fragmentation, Connectivity, and Landscape Heterogeneity
- Ecosystem Services
Course No: NR 240  
Course Credit: 3  
Lecture Hrs/wk:  
Lab Hrs/Wk:  
Lecture/Lab Hrs/Wk:  
Practicum Hrs/Wk:  
Clock Hours: 33  
Length of Course: 11 wks.  
Banner enforced Prerequisite: Course in Biology, Natural Resources or Instructor’s Consent  
Instructor enforced Prerequisite:  
Co-Requisite:  
Load Factor: 3 ILCs  
Activity Code: 100  
CIPS: 260101  

Course Title: Forest Ecosystems  
Developed By: Ken Carloni, Ph.D.  
Development Date: Nov. 2014  
Revision Date:  
Review Date:  

COURSE DESCRIPTION:  


COURSE OUTCOMES:  

Students who complete this course will be able to:  
- Describe the components and processes of forest ecosystems at multiple scales.  
- Explain the flow of energy and the cycling of nutrients in ecosystems, and discuss the factors that influence these processes.  
- Explain the influence of climate, soils, topography, and disturbance agents on ecosystem structure and function.  
- Explain the relationships between the processes of disturbance and forest succession, and discuss their effects on ecosystem structure and function including stand demographics, soils, water resources, wildlife habitat, carbon storage and biodiversity.  
- Discriminate among those management practices that accumulate carbon, store water, produce sustainable products, and increase biodiversity from those that don’t.  
- Recognize effective solutions to ecological problems and communicate them clearly.
COURSE OUTLINE:

- Fundamental Ecosystem Concepts
- Structure and Function of Forest Ecosystems at Multiple Scales
- Climate, Soils, Topography and Ecoregions
- Coevolution of Populations and Communities
- Disturbance and Succession in Forest Ecosystems
- Energy, Productivity and Biomass
- Biogeochemical Cycles
- Landscape Ecology: Fragmentation, Connectivity, and Landscape Heterogeneity
- Ecosystem Services
The course descriptions for PN 102 Foundations of Practical Nursing I and PN 103 Foundations of Practical Nursing II have been inadvertently switched in the catalog. The descriptions should read:

PN 102: Foundations of Practical Nursing I:
This course introduces focused assessment and common interventions (including technical procedures) for clients with chronic illnesses common across the lifespan in major ethnic groups. The client and family’s “lived experience” of the illness, coupled with clinical practice guidelines and research evidence is used to guide clinical judgment in care to the chronically ill. Roles of multidisciplinary team in care of the chronically ill and legal aspects of delegations are explored. Through case scenarios, cultural, ethical, health policy, and health care delivery system issues are explored in the context of chronic illness care. This course includes classroom, Lab/Nursing Science Resource Center (NSRC) and clinical learning experiences. 4 lecture, 16 clinical hrs/wk. W

PN 103: Foundations of Practical Nursing II:
This course introduces the learner to assessment and common interventions (including relevant technical procedures) for care of clients across the life span who require acute care, including normal childbirth. (Disease/illness trajectories and their translation into clinical practice guidelines and/or standard procedures are considered in relation to their impact on providing culturally sensitive, client-centered care. This course includes classroom, Lab/Nursing Science Resource Center (NSRC) and clinical learning experiences. 4 lecture, 16 clinical hrs/wk. S
MEMORANDUM

To: Instructional Council

From: Clay Baumgartner, Chair, Engineering and CIS Department

Date: April 23, 2015

Re: Potential Occupational Skills Training (OST) and Water Quality Degree Offering at UCC

Summary

The certification for water quality operators (water and wastewater treatment plant operators) requires work experience. The engineering program has developed relationships with local operators. We can find local placement for students to gain the work skills, but available UCC courses limit the number of hours of work experience that count towards a degree.

The ratio of work experience to credit hours set by the State is 33 hours of work experience per credit hour. Current UCC students can earn college credit for work experience through cooperative work experience (CWE). A maximum of approximately 12 credit hours of CWE (approximately 2.5 months of work experience) can count towards an AAS degree.

Occupational Skills Training (OST) is another alternative for work training. The limit is 28 credit hours of OST (approximately 6 months of work experience) for a two-year degree. The limit is higher than 28 credit hours for students with funding through the VA, trade act, or vocational rehabilitation.

The engineering program has coordinated with Ali Mageehon, Director of ABSD, to develop a curriculum for water quality operators that incorporates an OST certificate and AAS degree. The proposed curriculum is attached.

The first year of curriculum will be the first year of the engineering technology program. Students completing the first year of engineering technology course work would be eligible to receive a certificate an Engineering and Drafting Technician. The second year would focus on work experience, with 4 program related courses in water quality. The student would have the option of taking the OST certificate course first.

If the OST approach is viable, the engineering program would expand OST options for drafting and engineering technicians. The OST degree could potentially be offered in the 2016/17 catalog year.
Financial Aid Eligibility

Financial aid eligibility is the most significant issue with OST certificates. An OST certificate alone is not eligible for financial aid, however, the OST courses can be financial aid eligible if utilized as elective courses in a 2-year degree. OST certificates can be funded by other sources, such as Trade Act, VA, and vocational rehabilitation.

Other Community Colleges with Similar Offerings

Other Oregon community colleges offer OST certificates. Examples include PCC, Clackamas CC, LCC and Rogue CC. The primary difference between the OST programs at community colleges is how the OST certificate is incorporated into two year degrees. Rogue CC appears to have a program most similar to that proposed at UCC.

Additional Costs to UCC

There would be no additional instructional costs for UCC. The courses, with exception of OST courses, are all currently offered at UCC. The OST courses would be offered similar to CWE courses. There may be some curriculum development required for OST courses to reflect the differences in CWE. Faculty are currently reimbursed at a fixed 0.25 ILCs per student enrolled in CWE courses per quarter – regardless of how many credit hours of CWE a student takes. The formula for ILC may need to be adjusted for OST due to the larger number of credit hours, potentially with a formula related to number of credit hours per student.

Minimum Enrollment

Instructional ILCs of CWE and OST course are independent of enrollment and are based on a per student basis, similar to independent study courses.

Engineering Advisory Committee

The proposal is being presented to the Engineering Advisory Committee. The committee has been supportive of expanded opportunities for water quality operators.

Advising Guides

The proposed advising guides for the OST certificate and AAS degree are attached.

Notifications and State Approval Process

Notification will need to be made to the State.
**Next Steps**

If the Instructional Council is supportive of the OST certificate and AAS in Engineering Technology and Water Quality moving forward, next steps would include: 1) meeting with Advisory committee, 2) further evaluation of financial aid availability, 3) further evaluation of potential program costs, 4) evaluation of ILC formula for OST course, 5) confirmation of work training placement locations for students and 4) curriculum submittals to the Curriculum Committee/Instructional Council. The degree offerings would be in 2016/17 catalog if the degrees are determined to be viable.
WATER QUALITY TECHNOLOGY - OCCUPATIONAL SKILLS TRAINING CERTIFICATE

**General Education:** 12 credit hours; MTH 95 Pre-College Algebra 5 cr; Wr 121 English Composition 4 cr; Approved Human Relations 3 cr

**Program Specific:** 13 credit hours; WQT 260 Water Treatment, WQT 261 Water Distribution, WQT 228 Wastewater Collection, WQT 227 Wastewater Treatment

**Work Based Training:** 29 credit hours; OST 28 cr and CWE 161 Resume Writing 1 cr

---

**Prerequisites and Course Availability per Term**

<table>
<thead>
<tr>
<th>Course No. and Course Name</th>
<th>Term Offered</th>
<th>Prerequisites/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTH 95 Pre-College Algebra</td>
<td>F W S S</td>
<td>5 MTH 95 Intermediate Algebra</td>
</tr>
<tr>
<td>WQT 261 Water Distribution</td>
<td>x</td>
<td>4 MTH 65</td>
</tr>
<tr>
<td>OST 290 Occupational Training</td>
<td>x x x x</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WQT 260 Water Treatment</td>
<td>x</td>
<td>3 MTH 65</td>
</tr>
<tr>
<td>WQT 228 Wastewater Collection</td>
<td>x</td>
<td>3 MTH 65</td>
</tr>
<tr>
<td>OST 290 Occupational Training</td>
<td>x x x x</td>
<td>8</td>
</tr>
<tr>
<td>CWE 161 CWE Seminar I</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WQT 227 Wastewater Treatment</td>
<td>x</td>
<td>3 MTH 65</td>
</tr>
<tr>
<td>WR 121 English Composition, Intro to Argument</td>
<td>x x x x</td>
<td>4</td>
</tr>
<tr>
<td>OST 290 Occupational Training</td>
<td>x x x x</td>
<td>8</td>
</tr>
<tr>
<td>Human Relations Elective</td>
<td>x x x x</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OST 290 Occupational Training</td>
<td>x x x x</td>
<td>4</td>
</tr>
</tbody>
</table>

**TOTAL DEGREE CREDITS** 54

*A grade of "C" or better is required in all courses.*

**Program Advisor:** Clay Baumgartner 541-440-4683 clay.baumgartner@umpqua.edu

Last updated 4/21/2015
## Prerequisites and Course Availability per Term

<table>
<thead>
<tr>
<th>Course No. and Course Name</th>
<th>Term Offered</th>
<th>Credits</th>
<th>Prerequisites/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRF 112 Computer Aided Drafting (CAD) I</td>
<td>F W S S</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENGR 111 Engineering Orientation I</td>
<td>x</td>
<td>3</td>
<td>MTH 65 Elementary Algebra</td>
</tr>
<tr>
<td>MTH 95 Intermediate Algebra</td>
<td>x x x x</td>
<td>4</td>
<td>MTH 65 Elementary Algebra</td>
</tr>
<tr>
<td>WR 121 English Composition, Intro to Argument</td>
<td>x x x x</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Human Relations Elective</td>
<td>x x x x</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>DRF 113 Computer Aided Drafting (CAD) II</td>
<td>x</td>
<td>3</td>
<td>DRF 112 CAD I</td>
</tr>
<tr>
<td>GIS 134 Intro to Geographic Information Systems (GIS)</td>
<td>x</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENGR 112 Engineering Orientation II</td>
<td>x</td>
<td>3</td>
<td>ENGR 112 Engineering Orientation I</td>
</tr>
<tr>
<td>MTH 111 Algebra</td>
<td>x x x x</td>
<td>5</td>
<td>MTH 95 Pre-Algebra</td>
</tr>
<tr>
<td>CIV 114 CAD - Civil 3D</td>
<td>x</td>
<td>3</td>
<td>DRF 113 CAD I</td>
</tr>
<tr>
<td>DRF 116 Structural Drafting</td>
<td>x</td>
<td>3</td>
<td>DRF 113 CAD II</td>
</tr>
<tr>
<td>ENGR 245 Engineering Graphics</td>
<td>x</td>
<td>3</td>
<td>DRF 112 CAD I</td>
</tr>
<tr>
<td>MTH 112 Elementary Functions</td>
<td>x x x x</td>
<td>4</td>
<td>MTH 111 Algebra</td>
</tr>
<tr>
<td>SUR 161 Surveying I</td>
<td>x</td>
<td>4</td>
<td>MTH 95 Pre-Algebra</td>
</tr>
<tr>
<td>OST 280 Occupational Skills Training</td>
<td>x x x x</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>WQT 261 Water Distribution</td>
<td>x</td>
<td>4</td>
<td>MTH 65</td>
</tr>
<tr>
<td>OST 280 Occupational Skills Training</td>
<td>x x x x</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>WQT 260 Water Treatment</td>
<td>x</td>
<td>3</td>
<td>MTH 65</td>
</tr>
<tr>
<td>WQT 228 Wastewater Collection</td>
<td>x</td>
<td>3</td>
<td>MTH 65</td>
</tr>
<tr>
<td>OST 280 Occupational Skills Training</td>
<td>x x x x</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>WQT 227 Wastewater Treatment</td>
<td>x</td>
<td>3</td>
<td>MTH 65</td>
</tr>
<tr>
<td>OST 280 Occupational Skills Training</td>
<td>x x x x</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>CWE 161 CWE Seminar I</td>
<td>x x x x</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TOTAL DEGREE CREDITS</td>
<td>90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*A grade of "C" or better is required in all courses.*

Program Advisor: Clay Baumgartner  
541-440-4683  
clay.baumgartner@umpqua.edu
MEMORANDUM

To: Instructional Council

From: Clay Baumgartner, Chair, Engineering, CS and CIS Department
      Ken Carloni, Chair, Science Department

Date: April 20, 2015

Re: Potential Forestry Engineering (FE), Forestry Management (FM) and Natural Resources (NR) Degree Offering at UCC

Summary

The planned offering of a Natural Resources degree at UCC provides the core courses needed to also offer AS degrees with emphasis in Forestry Engineering (FE) and Forestry Management (FM).

The proposed curriculum for the Forestry Engineering and Forestry Management degrees has been developed in cooperation with the Science Department and Engineering/CIS Department. The proposed curriculum was reviewed on a preliminary basis by the OSU College of Forestry. It appears that all three of the forestry degrees can be articulated with OSU.

Only one new course, equivalent to OSU FE 209 Remote Sensing is needed at UCC to offer the additional two degrees. The remote sensing course includes an introduction to using LIDAR imaging, GPS, and photogrammetry for remote observations of natural resources.

The degrees in Forestry Engineering and Forestry Management could potentially be offered in the 2016/17 catalog year, the same year the Natural Resources degree will first be offered at UCC.

Accreditation

The proposed degrees are AS degrees and will align with OSU curriculum. The OSU College of Forestry is nationally accredited and therefore the Forestry Engineering, Forestry Management, and Natural Resources programs at UCC will also be accredited (under the OSU umbrella). This eliminates the need for two-full time faculty members in forestry as would be required for accreditation of a Forestry Technology program.

Core OSU Forestry Courses for FE and FM Degrees, and Proposed UCC Equivalents

The core OSU forestry courses for the Forestry Engineering and Forestry Management degrees are listed in Table 1, along with the proposed UCC equivalent courses. The core program courses for the Natural Resources degree that would be utilized in either the Forestry Engineering degree Forestry Management Degree, or both are also listed in Table 1.
Table 1. List of Core OSU Forestry Classes for FE and FM Majors and Proposed UCC Equivalents. Also listed are NR Course Utilized in Either FE Major, FM Major or both.

<table>
<thead>
<tr>
<th>Course</th>
<th>UCC</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCCE 201 CE II: Engineering Graphics and Design</td>
<td>DRF 112 CAD I</td>
<td></td>
</tr>
<tr>
<td>FOR 101 Intro to Forestry Engineering</td>
<td>ENGR 111 Intro to Engineering</td>
<td></td>
</tr>
<tr>
<td>FE 102 Forestry Engineering Problem Solving</td>
<td>ENGR 112 Intro to Engineering</td>
<td></td>
</tr>
<tr>
<td>FE 111 Introduction to Forestry</td>
<td>NR 201 Intro to Natural Resources</td>
<td></td>
</tr>
<tr>
<td>FE 112 Computing Apps in Forestry</td>
<td>ENGR 112 Intro to Engineering</td>
<td></td>
</tr>
<tr>
<td>FOR 141 Tree &amp; Shrub Identification</td>
<td>NR 241: Field Dendrology</td>
<td></td>
</tr>
<tr>
<td>FE 208 Forestry Surveying</td>
<td>SUR 161 Surveying I</td>
<td></td>
</tr>
<tr>
<td><strong>FE 209 Remote Sensing</strong></td>
<td><strong>ENGR 209 Remote Sensing</strong></td>
<td>**</td>
</tr>
<tr>
<td>FOR 240 Forestry Biology</td>
<td>NR 240: Forest Ecosystems</td>
<td></td>
</tr>
<tr>
<td>FOR 241 Dendrology</td>
<td>NR 241: Field Dendrology</td>
<td></td>
</tr>
<tr>
<td>FOR 251 Recreation Resource Management</td>
<td>Develop with PE Dept.</td>
<td></td>
</tr>
<tr>
<td>FE 257 GIS and Forestry Applications</td>
<td>UCC GIS 135 GIS II</td>
<td></td>
</tr>
<tr>
<td>SOIL 205 Soil Science</td>
<td>NR 205: Soil Science</td>
<td></td>
</tr>
<tr>
<td>+SOIL 206 Lab - Counts as Gen Ed requirement</td>
<td>NR 206: Soil Science Lab</td>
<td></td>
</tr>
</tbody>
</table>

Note: Core Forestry courses listed are required for Forestry Engineering and Forestry majors. Core courses for NR major that will be included in FE and/or FM programs are also listed. Not all courses for the NR degree are shown.

**Additional Costs to UCC**

One new course in Remote Sensing would be required at UCC to offer the two additional degrees in Forestry Engineering and Forestry Management. The remote sensing course includes an introduction to using LIDAR imaging, GPS, and photogrammetry for remote observations of natural resources. This is state of the art technology that is currently used in many applications.

The instructional cost will be offset by changes to UCC CIV 223 Properties and Materials – the class is a 4 credit hour class with 3 hours lecture and 3 hours lab. The class will be replaced with Soil 205/206, a soils science class with 3 hours of lecture and 3 hours lab. The Science Department will instruct the lecture (Soil 205) and engineering will instruct the lab (Soil 206). Soil 205/206 will transfer for the general education science requirement at OSU.

Additional study is need on the scope and cost of laboratory equipment needed for the class. There will be curriculum development required for the introductory course in remote sensing.
Minimum Enrollment

Utilizing the proposed NR courses in multiple majors will increase overall enrollment in the NR courses. The remote sensing course is new and would be added specifically for the NE and NM programs. However, this is a course that could potentially be taken by students from other programs, including Natural Resources. Enrollment will potentially increase in engineering courses (currently offered at UCC) that will be incorporated into the FE and FM degrees.

Engineering Advisory Committee

The Engineering advisory committee has included representatives from Roseburg Forest Products, Lone Rock Timber, BLM, and the US Forest Service. The engineering program has UCC graduates employed at all of these locations. The engineering program has contacts with local members of the forestry industry.

Advising Guides

The proposed advising guides for the UCC Forestry Engineering and Forestry Management majors are attached.

Other Community Colleges with Similar Offerings

SWOCC recently offered an AS degree with emphasis in Forestry Management. The degree is articulated with the OSU College of Forestry.

Notifications and State Approval Process

AS degrees are state-wide degrees. Therefore, UCC may have the authority to directly approve AS degrees that comply with criteria set by the State.

Next Steps

If the Instructional Council is supportive of the Forestry Engineering and Forestry Management programs moving forward, next steps would include 1) meeting with Advisory committee, 2) further evaluation of potential program costs, and 3) curriculum submittals to the Curriculum Committee/Instructional Council. The degree offerings would be in 2016/17 catalog if the degrees are determined to be viable.
### Forestry Engineering Transfer, AS
#### OSU Advising Guide

**Prerequisites and Course Availability per Term**

*(for complete information, see 2016-2017 UCC Catalog)*

<table>
<thead>
<tr>
<th>UCC Course No. and Course Name</th>
<th>Term Offered</th>
<th>Credits</th>
<th>Prerequisites/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Term 1</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 221E General Chemistry I /Lec/Lab/Rec</td>
<td>x</td>
<td>5</td>
<td>MTH 111</td>
</tr>
<tr>
<td>DRF 112E Computer Aided Drafting (CAD) I</td>
<td>x</td>
<td>3</td>
<td>MTH 65</td>
</tr>
<tr>
<td>ENGR 111E Engineering Drafting</td>
<td>x</td>
<td>3</td>
<td>MTH 65</td>
</tr>
<tr>
<td>MTH 251E Calculus I</td>
<td>x x</td>
<td>5</td>
<td>MTH 112</td>
</tr>
<tr>
<td><strong>Term 2</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GIS 134 Intro to Geographic Information Systems (GIS) I</td>
<td>x</td>
<td>3</td>
<td>DRF 112</td>
</tr>
<tr>
<td>ENGR 112E Engineering Orientation II</td>
<td>x</td>
<td>3</td>
<td>ENGR 111</td>
</tr>
<tr>
<td>MTH 252E Calculus II</td>
<td>x x</td>
<td>4</td>
<td>MTH 251</td>
</tr>
<tr>
<td>WR 121E English Composition: Intro to Argument</td>
<td>x x x x</td>
<td>4</td>
<td>WR 115 or Placement Test</td>
</tr>
<tr>
<td>Perspectives</td>
<td>General Ed Req - See Advisor</td>
<td>x x x</td>
<td>Perspectives Elective</td>
</tr>
<tr>
<td><strong>Term 3</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL 205/206 Soil Science With Lab</td>
<td>x</td>
<td>4</td>
<td>SOIL 205/206</td>
</tr>
<tr>
<td>GIS 135E Intro to GIS II</td>
<td>x</td>
<td>3</td>
<td>DRF 112</td>
</tr>
<tr>
<td>SUR 161E Surveying I</td>
<td>x</td>
<td>4</td>
<td>MTH 111</td>
</tr>
<tr>
<td>HPE 295E Wellness &amp; Health</td>
<td>x x x x</td>
<td>3</td>
<td>HHS 231 &amp; HHS 241-248</td>
</tr>
<tr>
<td>SP 111E Public Speaking</td>
<td>x x x</td>
<td>4</td>
<td>WR 095</td>
</tr>
<tr>
<td><strong>Summer</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGR 211E Statics</td>
<td>x</td>
<td>4</td>
<td>MTH 112</td>
</tr>
<tr>
<td>MTH 254E Vector Calculus I</td>
<td>x</td>
<td>4</td>
<td>MTH 252</td>
</tr>
<tr>
<td>PH 211E Physics I w/Calculus</td>
<td>x</td>
<td>5</td>
<td>MTH 251 Co-requisite</td>
</tr>
<tr>
<td>NR 201E Intro to Natural Resources</td>
<td>x</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ECON 201E Economics</td>
<td>x</td>
<td>3</td>
<td>WR 121-123 &amp; MTH 111</td>
</tr>
<tr>
<td><strong>Term 4</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGR 212E Dynamics</td>
<td>x</td>
<td>4</td>
<td>ENGR 211</td>
</tr>
<tr>
<td>MTH 256E Differential Equations</td>
<td>x</td>
<td>4</td>
<td>MTH 252</td>
</tr>
<tr>
<td>PH 212E Physics II w/Calculus</td>
<td>x</td>
<td>5</td>
<td>PH 211</td>
</tr>
<tr>
<td>NR 240E Forest Ecosystems</td>
<td>x</td>
<td>3</td>
<td>FOR 240 Forestry Biology</td>
</tr>
<tr>
<td><strong>Term 5</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGR 213E Strength of Materials</td>
<td>x</td>
<td>4</td>
<td>ENGR 211</td>
</tr>
<tr>
<td>MTH 243E Intro to Probability &amp; Statistics</td>
<td>x x</td>
<td>4</td>
<td>MTH 105</td>
</tr>
<tr>
<td>NR 241F Field Dendrology</td>
<td>x</td>
<td>4</td>
<td>FOR 141 Tree &amp; Shrub Identification</td>
</tr>
<tr>
<td>ENGR 209F Remote Sensing</td>
<td>x</td>
<td>4</td>
<td>FOR 209 Remote Sensing</td>
</tr>
<tr>
<td>WR 227F Technical Report Writing</td>
<td>x x x</td>
<td>4</td>
<td>WR 222</td>
</tr>
</tbody>
</table>

**Total Degree Credits**

106

*A grade of "C" or better is required in all courses.

Program Advisor:

**NOTES:**

1. Required by OSU College of Forestry for entry into the Pro Program

Last updated 4/20/2015
## FORESTRY MANAGEMENT TRANSFER, AS
### OSU ADVISING GUIDE

**Prerequisites and Course Availability per Term**

(for complete information, see 2016-2017 UCC Catalog)  
**REVISED 04/19/15**

### UCC Course No. and Course Name

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Offered</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 221E</td>
<td>General Chemistry I /Lec/Lab/Rec</td>
<td>x</td>
</tr>
<tr>
<td>NR 201E</td>
<td>Intro to Natural Resources</td>
<td>x</td>
</tr>
<tr>
<td>WR 121E</td>
<td>English Composition: Intro to Argument</td>
<td>x x x</td>
</tr>
<tr>
<td>MTH 111E</td>
<td>College Algebra</td>
<td>x x x</td>
</tr>
<tr>
<td>GIS 134</td>
<td>Intro to Geographic Information Systems (GIS) I</td>
<td>x</td>
</tr>
<tr>
<td>ENGR 112E</td>
<td>Engineering Orientation II</td>
<td>x</td>
</tr>
<tr>
<td>MTH 112E</td>
<td>Elementary Functions</td>
<td>x x</td>
</tr>
<tr>
<td>NR 240E</td>
<td>Forest Ecosystems</td>
<td>x</td>
</tr>
<tr>
<td>Perspectives</td>
<td>General Ed Req - See Advisor</td>
<td>x x x</td>
</tr>
<tr>
<td>SOIL 205/206E</td>
<td>Soil Science With Lab</td>
<td>x</td>
</tr>
<tr>
<td>GIS 135E</td>
<td>Intro to GIS II</td>
<td>x</td>
</tr>
<tr>
<td>SUR 161E</td>
<td>Surveying I</td>
<td>x</td>
</tr>
<tr>
<td>SP 111E</td>
<td>Public Speaking</td>
<td>x x x</td>
</tr>
<tr>
<td>MTH 251E</td>
<td>Calculus I</td>
<td>x</td>
</tr>
<tr>
<td>PH 201E</td>
<td>General Physics</td>
<td>x</td>
</tr>
<tr>
<td>HPE 205E</td>
<td>Wellness &amp; Health</td>
<td>x x x</td>
</tr>
<tr>
<td>ECON 201E</td>
<td>Economics</td>
<td>x</td>
</tr>
<tr>
<td>FOR 251</td>
<td>Recreation Resource Management</td>
<td>x</td>
</tr>
<tr>
<td>BI 212E</td>
<td>General Biology</td>
<td>x</td>
</tr>
<tr>
<td>Perspectives</td>
<td>General Ed Req - See Advisor</td>
<td>x x x</td>
</tr>
<tr>
<td>Perspectives</td>
<td>General Ed Req - See Advisor</td>
<td>x x x</td>
</tr>
<tr>
<td>MTH 243E</td>
<td>Intro to Probability &amp; Statistics</td>
<td>x x</td>
</tr>
<tr>
<td>NR 241E</td>
<td>Field Dendrology</td>
<td>x</td>
</tr>
<tr>
<td>FE 209E</td>
<td>Forest Photogrammetry</td>
<td>x</td>
</tr>
<tr>
<td>WR 227</td>
<td>Technical Report Writing</td>
<td>x x x</td>
</tr>
</tbody>
</table>

### TOTAL DEGREE CREDITS

<table>
<thead>
<tr>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
</tr>
</tbody>
</table>

*A grade of "C" or better is required in all courses.

**Program Advisor:**

**NOTES:**

- Required by OSU College of Forestry for entry into the Pro Program